{"title":"Two Bayesian approaches of monitoring mean of Gaussian process using Bayes factor","authors":"Yaxin Tan, Amitava Mukherjee, Jiujun Zhang","doi":"10.1002/qre.3567","DOIUrl":null,"url":null,"abstract":"This paper develops two novel process monitoring schemes for the mean of a Gaussian process: the Bayes factor (BF) and the improved Bayes factor (IBF) schemes. Conjugate priors are used to construct the plotting statistics. The performance of the proposed schemes is evaluated in terms of average run length (ARL), standard deviation of run length (SDRL), and several percentiles, and these performance metrics across different hyper‐parameters and various sample sizes are evaluated via Monte Carlo simulations. Both zero‐state and steady‐state out‐of‐control (OOC) performances are investigated comprehensively. The simulation results show that the IBF scheme outperforms the existing Bayesian exponentially weighted moving average (EWMA) schemes under different loss functions in zero‐state. In steady‐state conditions, the IBF scheme outperforms for small shifts. Finally, we present two examples to illustrate the practical application of the proposed schemes.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":"28 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3567","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops two novel process monitoring schemes for the mean of a Gaussian process: the Bayes factor (BF) and the improved Bayes factor (IBF) schemes. Conjugate priors are used to construct the plotting statistics. The performance of the proposed schemes is evaluated in terms of average run length (ARL), standard deviation of run length (SDRL), and several percentiles, and these performance metrics across different hyper‐parameters and various sample sizes are evaluated via Monte Carlo simulations. Both zero‐state and steady‐state out‐of‐control (OOC) performances are investigated comprehensively. The simulation results show that the IBF scheme outperforms the existing Bayesian exponentially weighted moving average (EWMA) schemes under different loss functions in zero‐state. In steady‐state conditions, the IBF scheme outperforms for small shifts. Finally, we present two examples to illustrate the practical application of the proposed schemes.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.