On Long Waves and Solitons in Particle Lattices with Forces of Infinite Range

IF 1.9 4区 数学 Q1 MATHEMATICS, APPLIED
Benjamin Ingimarson, Robert L. Pego
{"title":"On Long Waves and Solitons in Particle Lattices with Forces of Infinite Range","authors":"Benjamin Ingimarson, Robert L. Pego","doi":"10.1137/23m1607209","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 3, Page 808-830, June 2024. <br/> Abstract. We study waves on infinite one-dimensional lattices of particles that each interact with all others through power-law forces [math]. The inverse-cube case corresponds to Calogero–Moser systems which are well known to be completely integrable for any finite number of particles. The formal long-wave limit for unidirectional waves in these lattices is the Korteweg–de Vries equation if [math], but with [math] it is a nonlocal dispersive PDE that reduces to the Benjamin–Ono equation for [math]. For the infinite Calogero–Moser lattice, we find explicit formulas that describe solitary and periodic traveling waves.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1607209","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Applied Mathematics, Volume 84, Issue 3, Page 808-830, June 2024.
Abstract. We study waves on infinite one-dimensional lattices of particles that each interact with all others through power-law forces [math]. The inverse-cube case corresponds to Calogero–Moser systems which are well known to be completely integrable for any finite number of particles. The formal long-wave limit for unidirectional waves in these lattices is the Korteweg–de Vries equation if [math], but with [math] it is a nonlocal dispersive PDE that reduces to the Benjamin–Ono equation for [math]. For the infinite Calogero–Moser lattice, we find explicit formulas that describe solitary and periodic traveling waves.
论具有无限范围力的粒子晶格中的长波和孤子
SIAM 应用数学杂志》第 84 卷第 3 期第 808-830 页,2024 年 6 月。 摘要。我们研究由粒子组成的无限一维晶格上的波,每个粒子都通过幂律力与其他粒子相互作用[数学]。反立方情况对应于 Calogero-Moser 系统,众所周知,该系统对于任何有限数量的粒子都是完全可积分的。这些晶格中单向波的形式长波极限是[math]的 Korteweg-de Vries 方程,但在[math]的情况下,它是一个非局部色散 PDE,可以简化为[math]的 Benjamin-Ono 方程。对于无限卡洛吉罗-莫泽晶格,我们找到了描述孤行波和周期行波的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
79
审稿时长
12 months
期刊介绍: SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信