Comparison of the Film Properties of Lemon and Sour Cherry Seed Essential Oil-Added Glycerol and/or Sorbitol-Plasticized Corn, Potato, Rice, Tapioca, and Wheat Starch-Based Edible Films

IF 3.4 4区 化学 Q2 POLYMER SCIENCE
Merve Basut Kazak, Nurcan Tugrul
{"title":"Comparison of the Film Properties of Lemon and Sour Cherry Seed Essential Oil-Added Glycerol and/or Sorbitol-Plasticized Corn, Potato, Rice, Tapioca, and Wheat Starch-Based Edible Films","authors":"Merve Basut Kazak, Nurcan Tugrul","doi":"10.1155/2024/9112555","DOIUrl":null,"url":null,"abstract":"In this study, lemon, and sour cherry seed essential oil-added glycerol and/or sorbitol-plasticized corn, potato, rice, tapioca, and wheat starch-based edible films were produced using the casting method. Starch, essential oil type and glycerol and/or sorbitol effects on the thickness, moisture content, water solubility, swelling index, and water vapor transmission rate of the films have been studied. The interaction of the film components was evaluated by Fourier transform infrared spectroscopy. It was seen that wheat starch-based control films give the lowest thickness value (0.010 mm). Wheat starch-based control films (15.50%), sour cherry seed essential oil-added corn starch (17.80%), and lemon essential oil-added rice starch-based composite films (17.70%) have high moisture content. The lowest solubility values were obtained from wheat starch control (22%) and sour cherry seed essential oil-added corn starch composite (16.40%) films. The highest swelling index values were obtained from wheat starch-based control (210.90-289.0%), sour cherry seed essential oil-added tapioca starch (388.80%), and lemon essential oil-added potato starch-based (433.20%) composite films. Rice starch-based control films have the lowest water vapor transmission rate (<span><svg height=\"11.9413pt\" style=\"vertical-align:-0.3499002pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 32.221 11.9413\" width=\"32.221pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.204,0)\"><use xlink:href=\"#g113-52\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.444,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,24.59,0)\"></path></g></svg><span></span><svg height=\"11.9413pt\" style=\"vertical-align:-0.3499002pt\" version=\"1.1\" viewbox=\"35.076183799999995 -11.5914 68.719 11.9413\" width=\"68.719pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,35.126,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,41.366,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,47.653,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,53.213,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,61.086,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,71.623,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,77.863,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,80.827,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,87.069,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,96.214,0)\"><use xlink:href=\"#g117-42\"></use></g></svg><span></span><span><svg height=\"11.9413pt\" style=\"vertical-align:-0.3499002pt\" version=\"1.1\" viewbox=\"106.70118380000001 -11.5914 23.399 11.9413\" width=\"23.399pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,106.751,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,112.991,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,119.278,-5.741)\"><use xlink:href=\"#g54-33\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,124.838,-5.741)\"><use xlink:href=\"#g50-57\"></use></g></svg>).</span></span> FTIR spectra of edible composite films proved that there is no chemical interaction between the film component and that they kept their structure. The main difference of this study from previous studies was the use of sour cherry seed essential oil for the first time in edible film production and the comparison of the film properties of corn, potato, rice, tapioca, and wheat starch-based edible films plasticized with glycerol or sorbitol.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/9112555","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, lemon, and sour cherry seed essential oil-added glycerol and/or sorbitol-plasticized corn, potato, rice, tapioca, and wheat starch-based edible films were produced using the casting method. Starch, essential oil type and glycerol and/or sorbitol effects on the thickness, moisture content, water solubility, swelling index, and water vapor transmission rate of the films have been studied. The interaction of the film components was evaluated by Fourier transform infrared spectroscopy. It was seen that wheat starch-based control films give the lowest thickness value (0.010 mm). Wheat starch-based control films (15.50%), sour cherry seed essential oil-added corn starch (17.80%), and lemon essential oil-added rice starch-based composite films (17.70%) have high moisture content. The lowest solubility values were obtained from wheat starch control (22%) and sour cherry seed essential oil-added corn starch composite (16.40%) films. The highest swelling index values were obtained from wheat starch-based control (210.90-289.0%), sour cherry seed essential oil-added tapioca starch (388.80%), and lemon essential oil-added potato starch-based (433.20%) composite films. Rice starch-based control films have the lowest water vapor transmission rate (). FTIR spectra of edible composite films proved that there is no chemical interaction between the film component and that they kept their structure. The main difference of this study from previous studies was the use of sour cherry seed essential oil for the first time in edible film production and the comparison of the film properties of corn, potato, rice, tapioca, and wheat starch-based edible films plasticized with glycerol or sorbitol.
添加甘油和/或山梨醇的柠檬和酸樱桃籽精油塑化玉米、马铃薯、大米、木薯和小麦淀粉基食用薄膜的薄膜特性比较
本研究采用浇铸法生产了柠檬和酸樱桃籽精油添加甘油和/或山梨醇塑化的玉米、马铃薯、大米、木薯和小麦淀粉基食用薄膜。研究了淀粉、精油类型以及甘油和/或山梨醇对薄膜厚度、含水量、水溶性、膨胀指数和水蒸气透过率的影响。傅里叶变换红外光谱法评估了薄膜成分之间的相互作用。结果表明,小麦淀粉基对照薄膜的厚度值最低(0.010 毫米)。小麦淀粉基对照薄膜(15.50%)、酸樱桃籽精油添加玉米淀粉(17.80%)和柠檬精油添加大米淀粉基复合薄膜(17.70%)的水分含量较高。小麦淀粉对照(22%)和酸樱桃籽精油添加玉米淀粉的复合薄膜(16.40%)的溶解度值最低。膨胀指数值最高的是小麦淀粉基对照组(210.90-289.0%)、酸樱桃籽精油添加木薯淀粉(388.80%)和柠檬精油添加马铃薯淀粉基(433.20%)复合薄膜。大米淀粉基对照薄膜的水蒸气透过率最低()。可食用复合薄膜的傅立叶变换红外光谱证明,薄膜成分之间不存在化学作用,并保持了各自的结构。本研究与以往研究的主要区别在于首次在食用薄膜生产中使用了酸樱桃籽精油,并比较了玉米、马铃薯、大米、木薯和小麦淀粉基食用薄膜与甘油或山梨醇塑化后的薄膜特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信