Nuclear Physics in the Era of Quantum Computing and Quantum Machine Learning

José‐Enrique García‐Ramos, Álvaro Sáiz, José M. Arias, Lucas Lamata, Pedro Pérez‐Fernández
{"title":"Nuclear Physics in the Era of Quantum Computing and Quantum Machine Learning","authors":"José‐Enrique García‐Ramos, Álvaro Sáiz, José M. Arias, Lucas Lamata, Pedro Pérez‐Fernández","doi":"10.1002/qute.202300219","DOIUrl":null,"url":null,"abstract":"In this paper, the application of quantum simulations and quantum machine learning is explored to solve problems in low‐energy nuclear physics. The use of quantum computing to address nuclear physics problems is still in its infancy, and particularly, the application of quantum machine learning (QML) in the realm of low‐energy nuclear physics is almost nonexistent. Three specific examples are presented where the utilization of quantum computing and QML provides, or can potentially provide in the future, a computational advantage: i) determining the phase/shape in schematic nuclear models, ii) calculating the ground state energy of a nuclear shell model‐type Hamiltonian, and iii) identifying particles or determining trajectories in nuclear physics experiments.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the application of quantum simulations and quantum machine learning is explored to solve problems in low‐energy nuclear physics. The use of quantum computing to address nuclear physics problems is still in its infancy, and particularly, the application of quantum machine learning (QML) in the realm of low‐energy nuclear physics is almost nonexistent. Three specific examples are presented where the utilization of quantum computing and QML provides, or can potentially provide in the future, a computational advantage: i) determining the phase/shape in schematic nuclear models, ii) calculating the ground state energy of a nuclear shell model‐type Hamiltonian, and iii) identifying particles or determining trajectories in nuclear physics experiments.
量子计算和量子机器学习时代的核物理
本文探讨了量子模拟和量子机器学习在解决低能核物理问题中的应用。利用量子计算解决核物理问题仍处于起步阶段,特别是量子机器学习(QML)在低能核物理领域的应用几乎不存在。本文介绍了三个利用量子计算和量子机器学习提供或将来可能提供计算优势的具体例子:i) 确定示意核模型中的相位/形状;ii) 计算核壳模型型哈密顿的基态能量;iii) 识别核物理实验中的粒子或确定轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信