Sunju Choi, Yong-il Kim, Sangwon Han, Jae Kwang Yun, Geun Dong Lee, Sehoon Choi, Hyeong Ryul Kim, Yong-Hee Kim, Dong Kwan Kim, Seung-Il Park, Jin-Sook Ryu
{"title":"Distinguishing thymic cysts from low-risk thymomas via [18F]FDG PET/CT","authors":"Sunju Choi, Yong-il Kim, Sangwon Han, Jae Kwang Yun, Geun Dong Lee, Sehoon Choi, Hyeong Ryul Kim, Yong-Hee Kim, Dong Kwan Kim, Seung-Il Park, Jin-Sook Ryu","doi":"10.1186/s13550-024-01108-3","DOIUrl":null,"url":null,"abstract":"Thymic cysts are a rare benign disease that needs to be distinguished from low-risk thymoma. [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is a non-invasive imaging technique used in the differential diagnosis of thymic epithelial tumours, but its usefulness for thymic cysts remains unclear. Our study evaluated the utility of visual findings and quantitative parameters of [18F]FDG PET/CT for differentiating between thymic cysts and low-risk thymomas. Patients who underwent preoperative [18F]FDG PET/CT followed by thymectomy for a thymic mass were retrospectively analyzed. The visual [18F]FDG PET/CT findings evaluated were PET visual grade, PET central metabolic defect, and CT shape. The quantitative [18F]FDG PET/CT parameters evaluated were PET maximum standardized uptake value (SUVmax), CT diameter (cm), and CT attenuation in Hounsfield units (HU). Findings and parameters for differentiating thymic cysts from low-risk thymomas were assessed using Pearson’s chi-square test, the Mann-Whitney U-test, and receiver operating characteristics (ROC) curve analysis. Seventy patients (18 thymic cysts and 52 low-risk thymomas) were finally included. Visual findings of PET visual grade (P < 0.001) and PET central metabolic defect (P < 0.001) showed significant differences between thymic cysts and low-risk thymomas, but CT shape did not. Among the quantitative parameters, PET SUVmax (P < 0.001), CT diameter (P < 0.001), and CT HU (P = 0.004) showed significant differences. In ROC analysis, PET SUVmax demonstrated the highest area under the curve (AUC) of 0.996 (P < 0.001), with a cut-off of equal to or less than 2.1 having a sensitivity of 100.0% and specificity of 94.2%. The AUC of PET SUVmax was significantly larger than that of CT diameter (P = 0.009) and CT HU (P = 0.004). Among the [18F]FDG PET/CT parameters examined, low FDG uptake (SUVmax ≤ 2.1, equal to or less than the mediastinum) is a strong diagnostic marker for a thymic cyst. PET visual grade and central metabolic defect are easily accessible findings.","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"124 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13550-024-01108-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Thymic cysts are a rare benign disease that needs to be distinguished from low-risk thymoma. [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is a non-invasive imaging technique used in the differential diagnosis of thymic epithelial tumours, but its usefulness for thymic cysts remains unclear. Our study evaluated the utility of visual findings and quantitative parameters of [18F]FDG PET/CT for differentiating between thymic cysts and low-risk thymomas. Patients who underwent preoperative [18F]FDG PET/CT followed by thymectomy for a thymic mass were retrospectively analyzed. The visual [18F]FDG PET/CT findings evaluated were PET visual grade, PET central metabolic defect, and CT shape. The quantitative [18F]FDG PET/CT parameters evaluated were PET maximum standardized uptake value (SUVmax), CT diameter (cm), and CT attenuation in Hounsfield units (HU). Findings and parameters for differentiating thymic cysts from low-risk thymomas were assessed using Pearson’s chi-square test, the Mann-Whitney U-test, and receiver operating characteristics (ROC) curve analysis. Seventy patients (18 thymic cysts and 52 low-risk thymomas) were finally included. Visual findings of PET visual grade (P < 0.001) and PET central metabolic defect (P < 0.001) showed significant differences between thymic cysts and low-risk thymomas, but CT shape did not. Among the quantitative parameters, PET SUVmax (P < 0.001), CT diameter (P < 0.001), and CT HU (P = 0.004) showed significant differences. In ROC analysis, PET SUVmax demonstrated the highest area under the curve (AUC) of 0.996 (P < 0.001), with a cut-off of equal to or less than 2.1 having a sensitivity of 100.0% and specificity of 94.2%. The AUC of PET SUVmax was significantly larger than that of CT diameter (P = 0.009) and CT HU (P = 0.004). Among the [18F]FDG PET/CT parameters examined, low FDG uptake (SUVmax ≤ 2.1, equal to or less than the mediastinum) is a strong diagnostic marker for a thymic cyst. PET visual grade and central metabolic defect are easily accessible findings.
EJNMMI ResearchRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING&nb-
CiteScore
5.90
自引率
3.10%
发文量
72
审稿时长
13 weeks
期刊介绍:
EJNMMI Research publishes new basic, translational and clinical research in the field of nuclear medicine and molecular imaging. Regular features include original research articles, rapid communication of preliminary data on innovative research, interesting case reports, editorials, and letters to the editor. Educational articles on basic sciences, fundamental aspects and controversy related to pre-clinical and clinical research or ethical aspects of research are also welcome. Timely reviews provide updates on current applications, issues in imaging research and translational aspects of nuclear medicine and molecular imaging technologies.
The main emphasis is placed on the development of targeted imaging with radiopharmaceuticals within the broader context of molecular probes to enhance understanding and characterisation of the complex biological processes underlying disease and to develop, test and guide new treatment modalities, including radionuclide therapy.