Vision-based Discovery of Nonlinear Dynamics for 3D Moving Target

Zitong Zhang, Yang Liu, Hao Sun
{"title":"Vision-based Discovery of Nonlinear Dynamics for 3D Moving Target","authors":"Zitong Zhang, Yang Liu, Hao Sun","doi":"arxiv-2404.17865","DOIUrl":null,"url":null,"abstract":"Data-driven discovery of governing equations has kindled significant\ninterests in many science and engineering areas. Existing studies primarily\nfocus on uncovering equations that govern nonlinear dynamics based on direct\nmeasurement of the system states (e.g., trajectories). Limited efforts have\nbeen placed on distilling governing laws of dynamics directly from videos for\nmoving targets in a 3D space. To this end, we propose a vision-based approach\nto automatically uncover governing equations of nonlinear dynamics for 3D\nmoving targets via raw videos recorded by a set of cameras. The approach is\ncomposed of three key blocks: (1) a target tracking module that extracts plane\npixel motions of the moving target in each video, (2) a Rodrigues' rotation\nformula-based coordinate transformation learning module that reconstructs the\n3D coordinates with respect to a predefined reference point, and (3) a\nspline-enhanced library-based sparse regressor that uncovers the underlying\ngoverning law of dynamics. This framework is capable of effectively handling\nthe challenges associated with measurement data, e.g., noise in the video,\nimprecise tracking of the target that causes data missing, etc. The efficacy of\nour method has been demonstrated through multiple sets of synthetic videos\nconsidering different nonlinear dynamics.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.17865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven discovery of governing equations has kindled significant interests in many science and engineering areas. Existing studies primarily focus on uncovering equations that govern nonlinear dynamics based on direct measurement of the system states (e.g., trajectories). Limited efforts have been placed on distilling governing laws of dynamics directly from videos for moving targets in a 3D space. To this end, we propose a vision-based approach to automatically uncover governing equations of nonlinear dynamics for 3D moving targets via raw videos recorded by a set of cameras. The approach is composed of three key blocks: (1) a target tracking module that extracts plane pixel motions of the moving target in each video, (2) a Rodrigues' rotation formula-based coordinate transformation learning module that reconstructs the 3D coordinates with respect to a predefined reference point, and (3) a spline-enhanced library-based sparse regressor that uncovers the underlying governing law of dynamics. This framework is capable of effectively handling the challenges associated with measurement data, e.g., noise in the video, imprecise tracking of the target that causes data missing, etc. The efficacy of our method has been demonstrated through multiple sets of synthetic videos considering different nonlinear dynamics.
基于视觉的三维移动目标非线性动力学发现
数据驱动的支配方程发现在许多科学和工程领域都引起了极大的兴趣。现有研究主要侧重于根据对系统状态(如轨迹)的直接测量来发现非线性动力学的支配方程。直接从三维空间中移动目标的视频中提炼出动力学支配法则的工作还很有限。为此,我们提出了一种基于视觉的方法,通过一组摄像机记录的原始视频自动发现三维运动目标的非线性动力学支配方程。该方法由三个关键模块组成:(1) 目标跟踪模块,用于提取每个视频中移动目标的平面像素运动;(2) 基于罗德里格斯旋转公式的坐标变换学习模块,用于重建相对于预定参考点的三维坐标;(3) 基于模板增强库的稀疏回归器,用于揭示动态的基本治理法则。这一框架能够有效地处理与测量数据相关的挑战,例如视频中的噪声、对目标的不精确跟踪导致的数据缺失等。我们已通过多组考虑不同非线性动态的合成视频证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信