Subspace Newton method for sparse group $$\ell _0$$ optimization problem

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shichen Liao, Congying Han, Tiande Guo, Bonan Li
{"title":"Subspace Newton method for sparse group $$\\ell _0$$ optimization problem","authors":"Shichen Liao, Congying Han, Tiande Guo, Bonan Li","doi":"10.1007/s10898-024-01396-y","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates sparse optimization problems characterized by a sparse group structure, where element- and group-level sparsity are jointly taken into account. This particular optimization model has exhibited notable efficacy in tasks such as feature selection, parameter estimation, and the advancement of model interpretability. Central to our study is the scrutiny of the <span>\\(\\ell _0\\)</span> and <span>\\(\\ell _{2,0}\\)</span> norm regularization model, which, in comparison to alternative surrogate formulations, presents formidable computational challenges. We embark on our study by conducting the analysis of the optimality conditions of the sparse group optimization problem, leveraging the notion of a <span>\\(\\gamma \\)</span>-stationary point, whose linkage to local and global minimizer is established. In a subsequent facet of our study, we develop a novel subspace Newton algorithm for sparse group <span>\\(\\ell _0\\)</span> optimization problem and prove its global convergence property as well as local second-order convergence rate. Experimental results reveal the superlative performance of our algorithm in terms of both precision and computational expediency, thereby outperforming several state-of-the-art solvers.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01396-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates sparse optimization problems characterized by a sparse group structure, where element- and group-level sparsity are jointly taken into account. This particular optimization model has exhibited notable efficacy in tasks such as feature selection, parameter estimation, and the advancement of model interpretability. Central to our study is the scrutiny of the \(\ell _0\) and \(\ell _{2,0}\) norm regularization model, which, in comparison to alternative surrogate formulations, presents formidable computational challenges. We embark on our study by conducting the analysis of the optimality conditions of the sparse group optimization problem, leveraging the notion of a \(\gamma \)-stationary point, whose linkage to local and global minimizer is established. In a subsequent facet of our study, we develop a novel subspace Newton algorithm for sparse group \(\ell _0\) optimization problem and prove its global convergence property as well as local second-order convergence rate. Experimental results reveal the superlative performance of our algorithm in terms of both precision and computational expediency, thereby outperforming several state-of-the-art solvers.

Abstract Image

稀疏组 $$ell _0$$ 优化问题的子空间牛顿法
本文研究了以稀疏组结构为特征的稀疏优化问题,其中共同考虑了元素和组级稀疏性。这种特殊的优化模型在特征选择、参数估计和提高模型可解释性等任务中表现出了显著的功效。我们研究的核心是对\(\ell _0\) 和\(\ell _{2,0}\) 规范正则化模型的仔细研究,与其他替代公式相比,该模型带来了巨大的计算挑战。我们利用(\(\gamma \))静止点的概念,对稀疏组优化问题的最优性条件进行了分析,并建立了其与局部和全局最小化的联系,从而开始了我们的研究。在随后的研究中,我们为稀疏组 \(\ell _0\) 优化问题开发了一种新颖的子空间牛顿算法,并证明了它的全局收敛特性以及局部二阶收敛率。实验结果表明,我们的算法在精确度和计算便利性方面都有卓越的表现,因此优于几种最先进的求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信