Xue Nan, Xuan Chao Huang, Mengyao Huang, Xuefan Wang, Youping Zhu, Yayun Li, Shifei Shen, Ming Fu
{"title":"Study on the influencing factors of impact resistance of shear thickening fluids filled foam","authors":"Xue Nan, Xuan Chao Huang, Mengyao Huang, Xuefan Wang, Youping Zhu, Yayun Li, Shifei Shen, Ming Fu","doi":"10.1108/ijcst-02-2024-0031","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The present study assesses the impact resistance of the shear thickening fluids-filled (STFs-filled) foam through drop-hammer impact tests.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The maximum residual impact load and specific impact energy absorption rate of STF-filled foam are studied with varying thickness (4–14 mm), densities (0.35–0.6 g/cm3) and hardness (40–50 Rockwell Hardness C Scale (HRC)) under different ambient temperatures (−20−20 °C) and impact energies (25–75 J).</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The following conclusions are obtained from this study: (1) the higher the impact energy, the greater the maximum residual impact force and energy absorption efficiency of the material; (2) the impact resistance of STF-filled foam can be improved with the decrease of ambient temperature, achieving the highest energy absorption rate at −10?. (3) STF-filled foam substrate has the highest impact resistance, the lowest maximum residual impact force and the highest energy absorption coefficient when the density is 0.35 g/cm3, the hardness is 45HC and the thickness is 10 mm.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This is the first paper to analyze the impact of both environmental factors and material properties on the impact resistance of STF-filled foam. The results show that the decrease in temperature and the increase in hardness can enhance the impact resistance of STF-filled foam.</p><!--/ Abstract__block -->","PeriodicalId":50330,"journal":{"name":"International Journal of Clothing Science and Technology","volume":"2 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Clothing Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ijcst-02-2024-0031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The present study assesses the impact resistance of the shear thickening fluids-filled (STFs-filled) foam through drop-hammer impact tests.
Design/methodology/approach
The maximum residual impact load and specific impact energy absorption rate of STF-filled foam are studied with varying thickness (4–14 mm), densities (0.35–0.6 g/cm3) and hardness (40–50 Rockwell Hardness C Scale (HRC)) under different ambient temperatures (−20−20 °C) and impact energies (25–75 J).
Findings
The following conclusions are obtained from this study: (1) the higher the impact energy, the greater the maximum residual impact force and energy absorption efficiency of the material; (2) the impact resistance of STF-filled foam can be improved with the decrease of ambient temperature, achieving the highest energy absorption rate at −10?. (3) STF-filled foam substrate has the highest impact resistance, the lowest maximum residual impact force and the highest energy absorption coefficient when the density is 0.35 g/cm3, the hardness is 45HC and the thickness is 10 mm.
Originality/value
This is the first paper to analyze the impact of both environmental factors and material properties on the impact resistance of STF-filled foam. The results show that the decrease in temperature and the increase in hardness can enhance the impact resistance of STF-filled foam.
期刊介绍:
Addresses all aspects of the science and technology of clothing-objective measurement techniques, control of fibre and fabric, CAD systems, product testing, sewing, weaving and knitting, inspection systems, drape and finishing, etc. Academic and industrial research findings are published after a stringent review has taken place.