{"title":"Eldan’s stochastic localization and the KLS conjecture: Isoperimetry, concentration and mixing | Annals of Mathematics","authors":"Yin Tat Lee, Santosh S. Vempala","doi":"10.4007/annals.2024.199.3.2","DOIUrl":null,"url":null,"abstract":"<p>We analyze the Poincaré and Log-Sobolev constants of logconcave densities in $\\mathbb{R}^{n}$. For the Poincaré constant, we give an improved estimate of $O(\\sqrt{n})$ for any isotropic logconcave density. For the Log-Sobolev constant, we prove a bound of $\\Omega (1/D)$, where $D$ is the diameter of the support of the density, and show that this is asymptotically the best possible bound, resolving a question posed by Frieze and Kannan in 1997. These bounds have several interesting consequences. Improved bounds on the thin-shell and Cheeger/KLS constants are immediate. The ball walk to sample an isotropic logconcave density in $\\mathbb{R}^{n}$ converges in $O^{*}(n^{2.5})$ steps from a warm start, and the speedy version of the ball walk, studied by Kannan, Lov\\’aasz and Simonovits mixes in $O^{*}(n^{2}D)$ proper steps from any start, also a tight bound. As another consequence, we obtain a unified and improved large deviation inequality for the concentration of any $L$-Lipshitz function over an isotropic logconcave density (studied by many), generalizing bounds of Paouris and Guedon-E. Milman. Our proof technique is a development of stochastic localization, first introduced by Eldan.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.3.2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze the Poincaré and Log-Sobolev constants of logconcave densities in $\mathbb{R}^{n}$. For the Poincaré constant, we give an improved estimate of $O(\sqrt{n})$ for any isotropic logconcave density. For the Log-Sobolev constant, we prove a bound of $\Omega (1/D)$, where $D$ is the diameter of the support of the density, and show that this is asymptotically the best possible bound, resolving a question posed by Frieze and Kannan in 1997. These bounds have several interesting consequences. Improved bounds on the thin-shell and Cheeger/KLS constants are immediate. The ball walk to sample an isotropic logconcave density in $\mathbb{R}^{n}$ converges in $O^{*}(n^{2.5})$ steps from a warm start, and the speedy version of the ball walk, studied by Kannan, Lov\’aasz and Simonovits mixes in $O^{*}(n^{2}D)$ proper steps from any start, also a tight bound. As another consequence, we obtain a unified and improved large deviation inequality for the concentration of any $L$-Lipshitz function over an isotropic logconcave density (studied by many), generalizing bounds of Paouris and Guedon-E. Milman. Our proof technique is a development of stochastic localization, first introduced by Eldan.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.