{"title":"Eldan’s stochastic localization and the KLS conjecture: Isoperimetry, concentration and mixing | Annals of Mathematics","authors":"Yin Tat Lee, Santosh S. Vempala","doi":"10.4007/annals.2024.199.3.2","DOIUrl":null,"url":null,"abstract":"<p>We analyze the Poincaré and Log-Sobolev constants of logconcave densities in $\\mathbb{R}^{n}$. For the Poincaré constant, we give an improved estimate of $O(\\sqrt{n})$ for any isotropic logconcave density. For the Log-Sobolev constant, we prove a bound of $\\Omega (1/D)$, where $D$ is the diameter of the support of the density, and show that this is asymptotically the best possible bound, resolving a question posed by Frieze and Kannan in 1997. These bounds have several interesting consequences. Improved bounds on the thin-shell and Cheeger/KLS constants are immediate. The ball walk to sample an isotropic logconcave density in $\\mathbb{R}^{n}$ converges in $O^{*}(n^{2.5})$ steps from a warm start, and the speedy version of the ball walk, studied by Kannan, Lov\\’aasz and Simonovits mixes in $O^{*}(n^{2}D)$ proper steps from any start, also a tight bound. As another consequence, we obtain a unified and improved large deviation inequality for the concentration of any $L$-Lipshitz function over an isotropic logconcave density (studied by many), generalizing bounds of Paouris and Guedon-E. Milman. Our proof technique is a development of stochastic localization, first introduced by Eldan.</p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"43 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.3.2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze the Poincaré and Log-Sobolev constants of logconcave densities in $\mathbb{R}^{n}$. For the Poincaré constant, we give an improved estimate of $O(\sqrt{n})$ for any isotropic logconcave density. For the Log-Sobolev constant, we prove a bound of $\Omega (1/D)$, where $D$ is the diameter of the support of the density, and show that this is asymptotically the best possible bound, resolving a question posed by Frieze and Kannan in 1997. These bounds have several interesting consequences. Improved bounds on the thin-shell and Cheeger/KLS constants are immediate. The ball walk to sample an isotropic logconcave density in $\mathbb{R}^{n}$ converges in $O^{*}(n^{2.5})$ steps from a warm start, and the speedy version of the ball walk, studied by Kannan, Lov\’aasz and Simonovits mixes in $O^{*}(n^{2}D)$ proper steps from any start, also a tight bound. As another consequence, we obtain a unified and improved large deviation inequality for the concentration of any $L$-Lipshitz function over an isotropic logconcave density (studied by many), generalizing bounds of Paouris and Guedon-E. Milman. Our proof technique is a development of stochastic localization, first introduced by Eldan.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.