Kayhan Latifzadeh, Nima Gozalpour, V. Javier Traver, Tuukka Ruotsalo, Aleksandra Kawala-Sterniuk, Luis A Leiva
{"title":"Efficient Decoding of Affective States from Video-elicited EEG Signals: An Empirical Investigation","authors":"Kayhan Latifzadeh, Nima Gozalpour, V. Javier Traver, Tuukka Ruotsalo, Aleksandra Kawala-Sterniuk, Luis A Leiva","doi":"10.1145/3663669","DOIUrl":null,"url":null,"abstract":"<p>Affect decoding through brain-computer interfacing (BCI) holds great potential to capture users’ feelings and emotional responses via non-invasive electroencephalogram (EEG) sensing. Yet, little research has been conducted to understand <i>efficient</i> decoding when users are exposed to <i>dynamic</i> audiovisual contents. In this regard, we study EEG-based affect decoding from videos in arousal and valence classification tasks, considering the impact of signal length, window size for feature extraction, and frequency bands. We train both classic Machine Learning models (SVMs and <i>k</i>-NNs) and modern Deep Learning models (FCNNs and GTNs). Our results show that: (1) affect can be effectively decoded using less than 1 minute of EEG signal; (2) temporal windows of 6 and 10 seconds provide the best classification performance for classic Machine Learning models but Deep Learning models benefit from much shorter windows of 2 seconds; and (3) any model trained on the Beta band alone achieves similar (sometimes better) performance than when trained on all frequency bands. Taken together, our results indicate that affect decoding can work in more realistic conditions than currently assumed, thus becoming a viable technology for creating better interfaces and user models.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"21 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3663669","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Affect decoding through brain-computer interfacing (BCI) holds great potential to capture users’ feelings and emotional responses via non-invasive electroencephalogram (EEG) sensing. Yet, little research has been conducted to understand efficient decoding when users are exposed to dynamic audiovisual contents. In this regard, we study EEG-based affect decoding from videos in arousal and valence classification tasks, considering the impact of signal length, window size for feature extraction, and frequency bands. We train both classic Machine Learning models (SVMs and k-NNs) and modern Deep Learning models (FCNNs and GTNs). Our results show that: (1) affect can be effectively decoded using less than 1 minute of EEG signal; (2) temporal windows of 6 and 10 seconds provide the best classification performance for classic Machine Learning models but Deep Learning models benefit from much shorter windows of 2 seconds; and (3) any model trained on the Beta band alone achieves similar (sometimes better) performance than when trained on all frequency bands. Taken together, our results indicate that affect decoding can work in more realistic conditions than currently assumed, thus becoming a viable technology for creating better interfaces and user models.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.