{"title":"Degradation modeling and remaining useful lifetime prediction based on functional variance process","authors":"Linjie Qin, Yan Shen","doi":"10.1002/asmb.2866","DOIUrl":null,"url":null,"abstract":"<p>Dynamic fluctuation is a common phenomenon in degradation processes. Hence, how to model it properly has a great impact on the degradation modeling as well as the remaining useful lifetime prediction. To capture the dynamic features and to avoid the risk of the model mis-specification, a nonparametric degradation model based on functional variance process is proposed in this article. The model is composed of a unit-specific mean trend and a degradation fluctuation which follows a stochastic process. The mean trend is estimated by the local smoother method, while the stochastic fluctuation is estimated by the functional principal component analysis method. The asymptotic properties of the estimators are proved. Also, the prediction for the remaining useful lifetime is discussed and the estimator is proved to converge in distribution. Moreover, a Bayesian scheme is developed to forecast the remaining useful lifetime for units with incomplete degradation observations. Simulation results show the superiority of the proposed method by comparing it with some existing methods. Finally, two real data sets are analyzed and used to illustrate the application of the method.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2866","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic fluctuation is a common phenomenon in degradation processes. Hence, how to model it properly has a great impact on the degradation modeling as well as the remaining useful lifetime prediction. To capture the dynamic features and to avoid the risk of the model mis-specification, a nonparametric degradation model based on functional variance process is proposed in this article. The model is composed of a unit-specific mean trend and a degradation fluctuation which follows a stochastic process. The mean trend is estimated by the local smoother method, while the stochastic fluctuation is estimated by the functional principal component analysis method. The asymptotic properties of the estimators are proved. Also, the prediction for the remaining useful lifetime is discussed and the estimator is proved to converge in distribution. Moreover, a Bayesian scheme is developed to forecast the remaining useful lifetime for units with incomplete degradation observations. Simulation results show the superiority of the proposed method by comparing it with some existing methods. Finally, two real data sets are analyzed and used to illustrate the application of the method.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.