NumLLM: Numeric-Sensitive Large Language Model for Chinese Finance

Huan-Yi Su, Ke Wu, Yu-Hao Huang, Wu-Jun Li
{"title":"NumLLM: Numeric-Sensitive Large Language Model for Chinese Finance","authors":"Huan-Yi Su, Ke Wu, Yu-Hao Huang, Wu-Jun Li","doi":"arxiv-2405.00566","DOIUrl":null,"url":null,"abstract":"Recently, many works have proposed various financial large language models\n(FinLLMs) by pre-training from scratch or fine-tuning open-sourced LLMs on\nfinancial corpora. However, existing FinLLMs exhibit unsatisfactory performance\nin understanding financial text when numeric variables are involved in\nquestions. In this paper, we propose a novel LLM, called numeric-sensitive\nlarge language model (NumLLM), for Chinese finance. We first construct a\nfinancial corpus from financial textbooks which is essential for improving\nnumeric capability of LLMs during fine-tuning. After that, we train two\nindividual low-rank adaptation (LoRA) modules by fine-tuning on our constructed\nfinancial corpus. One module is for adapting general-purpose LLMs to financial\ndomain, and the other module is for enhancing the ability of NumLLM to\nunderstand financial text with numeric variables. Lastly, we merge the two LoRA\nmodules into the foundation model to obtain NumLLM for inference. Experiments\non financial question-answering benchmark show that NumLLM can boost the\nperformance of the foundation model and can achieve the best overall\nperformance compared to all baselines, on both numeric and non-numeric\nquestions.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.00566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, many works have proposed various financial large language models (FinLLMs) by pre-training from scratch or fine-tuning open-sourced LLMs on financial corpora. However, existing FinLLMs exhibit unsatisfactory performance in understanding financial text when numeric variables are involved in questions. In this paper, we propose a novel LLM, called numeric-sensitive large language model (NumLLM), for Chinese finance. We first construct a financial corpus from financial textbooks which is essential for improving numeric capability of LLMs during fine-tuning. After that, we train two individual low-rank adaptation (LoRA) modules by fine-tuning on our constructed financial corpus. One module is for adapting general-purpose LLMs to financial domain, and the other module is for enhancing the ability of NumLLM to understand financial text with numeric variables. Lastly, we merge the two LoRA modules into the foundation model to obtain NumLLM for inference. Experiments on financial question-answering benchmark show that NumLLM can boost the performance of the foundation model and can achieve the best overall performance compared to all baselines, on both numeric and non-numeric questions.
NumLLM:对数字敏感的中文金融大语言模型
最近,许多研究都提出了各种金融大型语言模型(FinLLMs),通过在金融语料库上从头开始预训练或微调开源的 LLMs 来实现。然而,当问题中涉及数字变量时,现有的金融大语言模型在理解金融文本方面的表现并不令人满意。在本文中,我们提出了一种适用于中文金融的新型 LLM,即数字敏感大语言模型(NumLLM)。我们首先从金融教科书中构建了一个金融语料库,该语料库对于在微调过程中提高 LLM 的数字能力至关重要。然后,我们在构建的金融语料库上进行微调,训练出两个单独的低秩适应(Low-rank adaptation,LoRA)模块。一个模块用于将通用 LLM 适应于金融领域,另一个模块用于增强 NumLLM 理解包含数字变量的金融文本的能力。最后,我们将两个 LoRA 模块合并到基础模型中,得到用于推理的 NumLLM。金融问题解答基准实验表明,NumLLM 可以提高基础模型的性能,并且与所有基准相比,在数字和非数字问题上都能获得最佳的总体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信