Jian Wu, Yan-Tang Gao, Shao-Hui Tang, Zhi-Quan Zeng, Ning Miao, Yun-Zhi Zhong, Lei Huang, Quan-Sheng Liu
{"title":"Experimental Study on the Boundary Reflection Effect of Stress Wave Propagation Based on the Newly Developed Test Apparatus","authors":"Jian Wu, Yan-Tang Gao, Shao-Hui Tang, Zhi-Quan Zeng, Ning Miao, Yun-Zhi Zhong, Lei Huang, Quan-Sheng Liu","doi":"10.1155/2024/7170963","DOIUrl":null,"url":null,"abstract":"There is a ubiquitous boundary reflection effect of stress wave propagation in the indoor experimental studies. It is critical to improve the validity of waveform data by optimizing boundary materials to absorb reflection waves. In the present study, a calculation method for the optimal wave impedance of boundary materials was proposed based on the transmission and reflection principle of one-dimensional stress waves at the interface of different media. By using the calculation method, the optimal wave impedance value of the boundary material was obtained. A one-dimensional stress wave propagation test apparatus was developed for exploring the improvement effect of absorbing materials on the boundary reflection effect. One-dimensional stress wave propagation experimental studies in the complete red sandstone samples were carried out by setting various boundary absorbing materials such as pine pad, rubber pad, and steel pad. The results indicated that the experimental test results were consistent with the theoretical calculation results. In the stress wave propagation tests, the optimal wave impedance value of the boundary material was 1.12 × 10<sup>6</sup> kg/m<sup>2</sup>·s. When the pine pads were used as boundary absorbing materials, the suppression effect of boundary reflection effects is relatively the best. The present study provides references for analyzing the characteristics and mechanism of stress wave propagation and attenuation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7170963","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a ubiquitous boundary reflection effect of stress wave propagation in the indoor experimental studies. It is critical to improve the validity of waveform data by optimizing boundary materials to absorb reflection waves. In the present study, a calculation method for the optimal wave impedance of boundary materials was proposed based on the transmission and reflection principle of one-dimensional stress waves at the interface of different media. By using the calculation method, the optimal wave impedance value of the boundary material was obtained. A one-dimensional stress wave propagation test apparatus was developed for exploring the improvement effect of absorbing materials on the boundary reflection effect. One-dimensional stress wave propagation experimental studies in the complete red sandstone samples were carried out by setting various boundary absorbing materials such as pine pad, rubber pad, and steel pad. The results indicated that the experimental test results were consistent with the theoretical calculation results. In the stress wave propagation tests, the optimal wave impedance value of the boundary material was 1.12 × 106 kg/m2·s. When the pine pads were used as boundary absorbing materials, the suppression effect of boundary reflection effects is relatively the best. The present study provides references for analyzing the characteristics and mechanism of stress wave propagation and attenuation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.