Investigation on Dynamic Stability of Cement-Stabilized Expansive Soil Subgrades Subjected to Repeated Heavy-Haul Train Loads

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yonghui Shang, Linrong Xu, Xiaofei Hao, Qichuan Zhu, Donghong Li
{"title":"Investigation on Dynamic Stability of Cement-Stabilized Expansive Soil Subgrades Subjected to Repeated Heavy-Haul Train Loads","authors":"Yonghui Shang, Linrong Xu, Xiaofei Hao, Qichuan Zhu, Donghong Li","doi":"10.1155/2024/7126022","DOIUrl":null,"url":null,"abstract":"The dynamic characteristics of the filler are intricately linked to the stability of the subgrade. In this investigation, relying on Haoji (Haolebaoji-Ji’an, China) heavy-haul railway engineering, cyclic triaxial tests were executed to scrutinize the dynamic attributes exhibited by the 3%–5% cement-stabilized expansive soil (CSES) across a series of diverse cyclic stress, confining pressures, and frequencies. Concurrently, in situ vibration trials were undertaken to dissect the dynamic characteristics inherent to the CSES subgrade. The outcomes of cyclic triaxial tests indicate that the augmentation in both the dynamic shear strength and modulus of CSES by a factor of 2–3, coupled with an escalation of the critical dynamic stress threshold by five tosix times, is attributed to the heightened internal structural density within the CSES compared to virgin expansive soil. In identical settings, it is noteworthy that the mean critical dynamic stress threshold observed for CSES surpasses that of Group A filling by a factor of 1.5–1.7. Furthermore, the maximum critical dynamic stress exhibited by CSES achieves a 1.2-fold superiority over its lime-stabilized expansive soil (LSES). The outcomes gleaned from the in situ vibration tests elucidate that, when subjected to the passage of a high-velocity train traveling at 120 km/hr, bearing the load of 25–30 tons per axle, the subgrade surface exhibits dynamic stress ranging from 98.57 to 116.07 kPa. Meanwhile, the dynamic stress undergoes a notable escalation due to rainfall infiltration, intensifying by a factor of 1.02–1.28 times its original magnitude. The influence depth of dynamic stress extends 1.4–1.6 times beyond the designed subgrade bed thickness of 2.5 m. Notably, the critical dynamic stress of the filler surpasses the dynamic stress at the same position, underscoreing the capacity of 3%–5% CSES filling for heavy-haul railways to ensure long-term dynamic stability.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7126022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic characteristics of the filler are intricately linked to the stability of the subgrade. In this investigation, relying on Haoji (Haolebaoji-Ji’an, China) heavy-haul railway engineering, cyclic triaxial tests were executed to scrutinize the dynamic attributes exhibited by the 3%–5% cement-stabilized expansive soil (CSES) across a series of diverse cyclic stress, confining pressures, and frequencies. Concurrently, in situ vibration trials were undertaken to dissect the dynamic characteristics inherent to the CSES subgrade. The outcomes of cyclic triaxial tests indicate that the augmentation in both the dynamic shear strength and modulus of CSES by a factor of 2–3, coupled with an escalation of the critical dynamic stress threshold by five tosix times, is attributed to the heightened internal structural density within the CSES compared to virgin expansive soil. In identical settings, it is noteworthy that the mean critical dynamic stress threshold observed for CSES surpasses that of Group A filling by a factor of 1.5–1.7. Furthermore, the maximum critical dynamic stress exhibited by CSES achieves a 1.2-fold superiority over its lime-stabilized expansive soil (LSES). The outcomes gleaned from the in situ vibration tests elucidate that, when subjected to the passage of a high-velocity train traveling at 120 km/hr, bearing the load of 25–30 tons per axle, the subgrade surface exhibits dynamic stress ranging from 98.57 to 116.07 kPa. Meanwhile, the dynamic stress undergoes a notable escalation due to rainfall infiltration, intensifying by a factor of 1.02–1.28 times its original magnitude. The influence depth of dynamic stress extends 1.4–1.6 times beyond the designed subgrade bed thickness of 2.5 m. Notably, the critical dynamic stress of the filler surpasses the dynamic stress at the same position, underscoreing the capacity of 3%–5% CSES filling for heavy-haul railways to ensure long-term dynamic stability.
水泥稳定膨胀土路基在重载列车重复载荷作用下的动态稳定性研究
填料的动态特性与路基的稳定性密切相关。在这项研究中,依托中国吉安好乐堡重载铁路工程,进行了循环三轴试验,以仔细研究 3%-5% 水泥稳定膨胀土(CSES)在一系列不同的循环应力、约束压力和频率下表现出的动态特性。同时,还进行了原位振动试验,以剖析 CSES 基层固有的动态特性。循环三轴试验的结果表明,与原始膨胀土相比,CSES 的动态剪切强度和模量提高了 2-3 倍,临界动态应力阈值提高了 5-6 倍,这归因于 CSES 内部结构密度的提高。值得注意的是,在相同的环境下,CSES 观察到的平均临界动应力阈值比 A 组填土高出 1.5-1.7 倍。此外,CSES 的最大临界动应力比其石灰稳定膨胀土(LSES)高出 1.2 倍。现场振动测试结果表明,当高速列车以每小时 120 公里的速度行驶,每轴承载 25-30 吨荷载时,路基表面表现出 98.57 至 116.07 千帕的动应力。同时,由于降雨的渗入,动应力显著增加,是原来的 1.02-1.28 倍。动应力的影响深度是设计基床厚度 2.5 米的 1.4-1.6 倍。值得注意的是,填料的临界动应力超过了同一位置的动应力,这说明 3%-5% CSES 填料在重载铁路上具有确保长期动稳定的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信