Single-Projection Procedure for Infinite Dimensional Convex Optimization Problems

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Hoa T. Bui, Regina S. Burachik, Evgeni A. Nurminski, Matthew K. Tam
{"title":"Single-Projection Procedure for Infinite Dimensional Convex Optimization Problems","authors":"Hoa T. Bui, Regina S. Burachik, Evgeni A. Nurminski, Matthew K. Tam","doi":"10.1137/22m1530173","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1646-1678, June 2024. <br/>Abstract. We consider a class of convex optimization problems in a Hilbert space that can be solved by performing a single projection, i.e., by projecting an infeasible point onto the feasible set. Our results improve those established for the linear programming setting in Nurminski (2015) by considering problems that (i) may have multiple solutions, (ii) do not satisfy strict complementarity conditions, and (iii) possess nonlinear convex constraints. As a by-product of our analysis, we provide a quantitative estimate on the required distance between the infeasible point and the feasible set in order for its projection to be a solution of the problem. Our analysis relies on a “sharpness” property of the constraint set, a new property we introduce here.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1530173","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 2, Page 1646-1678, June 2024.
Abstract. We consider a class of convex optimization problems in a Hilbert space that can be solved by performing a single projection, i.e., by projecting an infeasible point onto the feasible set. Our results improve those established for the linear programming setting in Nurminski (2015) by considering problems that (i) may have multiple solutions, (ii) do not satisfy strict complementarity conditions, and (iii) possess nonlinear convex constraints. As a by-product of our analysis, we provide a quantitative estimate on the required distance between the infeasible point and the feasible set in order for its projection to be a solution of the problem. Our analysis relies on a “sharpness” property of the constraint set, a new property we introduce here.
无穷维凸优化问题的单投影程序
SIAM 优化期刊》第 34 卷第 2 期第 1646-1678 页,2024 年 6 月。摘要。我们考虑了一类希尔伯特空间中的凸优化问题,这些问题可以通过执行一次投影求解,即把一个不可行点投影到可行集上。通过考虑以下问题,我们的结果改进了 Nurminski(2015)在线性规划设置中建立的结果:(i) 可能有多个解;(ii) 不满足严格的互补条件;(iii) 具有非线性凸约束。作为分析的副产品,我们对不可行点与可行集之间的必要距离进行了定量估计,以使其投影成为问题的解。我们的分析依赖于约束集的 "锐度 "属性,这是我们在此引入的一个新属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信