Hoa T. Bui, Regina S. Burachik, Evgeni A. Nurminski, Matthew K. Tam
{"title":"Single-Projection Procedure for Infinite Dimensional Convex Optimization Problems","authors":"Hoa T. Bui, Regina S. Burachik, Evgeni A. Nurminski, Matthew K. Tam","doi":"10.1137/22m1530173","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1646-1678, June 2024. <br/>Abstract. We consider a class of convex optimization problems in a Hilbert space that can be solved by performing a single projection, i.e., by projecting an infeasible point onto the feasible set. Our results improve those established for the linear programming setting in Nurminski (2015) by considering problems that (i) may have multiple solutions, (ii) do not satisfy strict complementarity conditions, and (iii) possess nonlinear convex constraints. As a by-product of our analysis, we provide a quantitative estimate on the required distance between the infeasible point and the feasible set in order for its projection to be a solution of the problem. Our analysis relies on a “sharpness” property of the constraint set, a new property we introduce here.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1530173","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Optimization, Volume 34, Issue 2, Page 1646-1678, June 2024. Abstract. We consider a class of convex optimization problems in a Hilbert space that can be solved by performing a single projection, i.e., by projecting an infeasible point onto the feasible set. Our results improve those established for the linear programming setting in Nurminski (2015) by considering problems that (i) may have multiple solutions, (ii) do not satisfy strict complementarity conditions, and (iii) possess nonlinear convex constraints. As a by-product of our analysis, we provide a quantitative estimate on the required distance between the infeasible point and the feasible set in order for its projection to be a solution of the problem. Our analysis relies on a “sharpness” property of the constraint set, a new property we introduce here.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.