A Bound-Preserving and Positivity-Preserving High-Order Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for Compressible Multi-Medium Flows

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Fan Zhang, Jian Cheng
{"title":"A Bound-Preserving and Positivity-Preserving High-Order Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for Compressible Multi-Medium Flows","authors":"Fan Zhang, Jian Cheng","doi":"10.1137/23m1588810","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page B254-B279, June 2024. <br/>Abstract. This work presents a novel bound-preserving and positivity-preserving direct arbitrary Lagrangian–Eulerian discontinuous Galerkin (ALE-DG) method for compressible multimedium flows by solving the five-equation transport model. The proposed method satisfies the discrete geometric conservation law (D-GCL) which indicates that uniform flow is precisely preserved during the simulation. More importantly, based on the D-GCL condition, we present a theoretical analysis on designing an efficient bound-preserving and positivity-preserving limiting strategy, which is able to maintain the boundedness of the volume fraction and the positivity of the partial density and internal energy, with the aim of avoiding the occurrence of inadmissible solutions and meanwhile improving the computational robustness. The accuracy and robustness of the proposed method are demonstrated by various one- and two-dimensional benchmark test cases. The numerical results verify the well capacity of the proposed high-order ALE-DG method for compressible multimedium flows with both the ideal and stiffened gas equation of state.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1588810","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page B254-B279, June 2024.
Abstract. This work presents a novel bound-preserving and positivity-preserving direct arbitrary Lagrangian–Eulerian discontinuous Galerkin (ALE-DG) method for compressible multimedium flows by solving the five-equation transport model. The proposed method satisfies the discrete geometric conservation law (D-GCL) which indicates that uniform flow is precisely preserved during the simulation. More importantly, based on the D-GCL condition, we present a theoretical analysis on designing an efficient bound-preserving and positivity-preserving limiting strategy, which is able to maintain the boundedness of the volume fraction and the positivity of the partial density and internal energy, with the aim of avoiding the occurrence of inadmissible solutions and meanwhile improving the computational robustness. The accuracy and robustness of the proposed method are demonstrated by various one- and two-dimensional benchmark test cases. The numerical results verify the well capacity of the proposed high-order ALE-DG method for compressible multimedium flows with both the ideal and stiffened gas equation of state.
可压缩多介质流的保界和保正高阶任意拉格朗日-欧勒非连续伽勒金方法
SIAM 科学计算期刊》,第 46 卷第 3 期,第 B254-B279 页,2024 年 6 月。摘要本文通过求解五方程输运模型,针对可压缩多介质流提出了一种新颖的保界和保正的直接任意拉格朗日-欧勒非连续伽勒金(ALE-DG)方法。所提出的方法满足离散几何守恒定律(D-GCL),这表明在模拟过程中均匀流得到了精确的保留。更重要的是,基于 D-GCL 条件,我们从理论上分析了如何设计一种高效的保界和保正限制策略,该策略能够保持体积分数的有界性以及部分密度和内能的正性,从而避免出现不允许解,同时提高计算的鲁棒性。各种一维和二维基准测试案例证明了所提方法的准确性和鲁棒性。数值结果验证了所提出的高阶 ALE-DG 方法在理想气体和强化气体状态方程的可压缩多介质流动中的良好能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信