Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Christian Bayer, Chiheb Ben Hammouda, Raúl Tempone
{"title":"Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities","authors":"Christian Bayer, Chiheb Ben Hammouda, Raúl Tempone","doi":"10.1137/22m1495718","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1514-A1548, June 2024. <br/>Abstract. The multilevel Monte Carlo (MLMC) method is highly efficient for estimating expectations of a functional of a solution to a stochastic differential equation (SDE). However, MLMC estimators may be unstable and have a poor (noncanonical) complexity in the case of low regularity of the functional. To overcome this issue, we extend our previously introduced idea of numerical smoothing in [Quant. Finance, 23 (2023), pp. 209–227], in the context of deterministic quadrature methods to the MLMC setting. The numerical smoothing technique is based on root-finding methods combined with one-dimensional numerical integration with respect to a single well-chosen variable. This study is motivated by the computation of probabilities of events, pricing options with a discontinuous payoff, and density estimation problems for dynamics where the discretization of the underlying stochastic processes is necessary. The analysis and numerical experiments reveal that the numerical smoothing significantly improves the strong convergence and, consequently, the complexity and robustness (by making the kurtosis at deep levels bounded) of the MLMC method. In particular, we show that numerical smoothing enables recovering the MLMC complexities obtained for Lipschitz functionals due to the optimal variance decay rate when using the Euler–Maruyama scheme. For the Milstein scheme, numerical smoothing recovers the canonical MLMC complexity, even for the nonsmooth integrand mentioned above. Finally, our approach efficiently estimates univariate and multivariate density functions.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1495718","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1514-A1548, June 2024.
Abstract. The multilevel Monte Carlo (MLMC) method is highly efficient for estimating expectations of a functional of a solution to a stochastic differential equation (SDE). However, MLMC estimators may be unstable and have a poor (noncanonical) complexity in the case of low regularity of the functional. To overcome this issue, we extend our previously introduced idea of numerical smoothing in [Quant. Finance, 23 (2023), pp. 209–227], in the context of deterministic quadrature methods to the MLMC setting. The numerical smoothing technique is based on root-finding methods combined with one-dimensional numerical integration with respect to a single well-chosen variable. This study is motivated by the computation of probabilities of events, pricing options with a discontinuous payoff, and density estimation problems for dynamics where the discretization of the underlying stochastic processes is necessary. The analysis and numerical experiments reveal that the numerical smoothing significantly improves the strong convergence and, consequently, the complexity and robustness (by making the kurtosis at deep levels bounded) of the MLMC method. In particular, we show that numerical smoothing enables recovering the MLMC complexities obtained for Lipschitz functionals due to the optimal variance decay rate when using the Euler–Maruyama scheme. For the Milstein scheme, numerical smoothing recovers the canonical MLMC complexity, even for the nonsmooth integrand mentioned above. Finally, our approach efficiently estimates univariate and multivariate density functions.
用数值平滑法进行多级蒙特卡洛,以稳健高效地计算概率和密度
SIAM 科学计算期刊》,第 46 卷第 3 期,第 A1514-A1548 页,2024 年 6 月。摘要多级蒙特卡洛(MLMC)方法对于估计随机微分方程(SDE)解的函数期望值非常有效。然而,在函数规律性较低的情况下,多级蒙特卡洛估计器可能不稳定,而且复杂性较差(非正则)。为了克服这个问题,我们将之前在[Quant. Finance, 23 (2023), pp. 209-227]中介绍的数值平滑想法,在确定性正交方法的背景下扩展到 MLMC 设置中。数值平滑技术基于寻根方法,并结合了关于单个精心选择变量的一维数值积分。这项研究的动机来自于事件概率的计算、具有不连续报酬的期权定价,以及需要对基本随机过程进行离散化的动力学密度估计问题。分析和数值实验表明,数值平滑显著提高了 MLMC 方法的强收敛性,并因此提高了其复杂性和鲁棒性(通过使深层次的峰度有界)。特别是,我们发现在使用 Euler-Maruyama 方案时,由于方差衰减率达到最佳,数值平滑可以恢复 Lipschitz 函数的 MLMC 复杂性。对于米尔斯坦方案,数值平滑可以恢复典型的 MLMC 复杂性,甚至对于上述非光滑积分也是如此。最后,我们的方法能有效估计单变量和多变量密度函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信