Experimental investigation on the effects of stainless-steel mesh reinforcing layers on low-velocity impact response of hybrid thermoplastic glass fiber composites
{"title":"Experimental investigation on the effects of stainless-steel mesh reinforcing layers on low-velocity impact response of hybrid thermoplastic glass fiber composites","authors":"Sepanta Mandegarian, Mehdi Hojjati","doi":"10.1177/00219983241253028","DOIUrl":null,"url":null,"abstract":"This study aims to assess the hybridization effect on the perforation threshold of Low-Velocity Impact (LVI) in thermoplastic glass composite laminates, incorporating layers of resin-impregnated stainless-steel mesh. Reinforcing methodologies such as hybridization are recently being adopted as a practical approach to increasing the energy-absorbing capacity of polymer composites. In the current paper, a multi-step hot press lamination method has been employed to fabricate the hybrid composite laminates strengthened with stainless-steel mesh layers. Several stacking sequences, metal mesh wire sizes, orientation and position relative to the impactor have been examined under various LVI energies. It was revealed that the LVI penetration energy was increased for the thermoplastic-based composite laminates reinforced with stainless-steel mesh layers. Furthermore, the LVI penetration energy threshold was significantly influenced by the metal mesh wire size, orientation and stacking sequence. Finally, the backlight method capability was assessed to detect the after-impact interlaminar damages.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241253028","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to assess the hybridization effect on the perforation threshold of Low-Velocity Impact (LVI) in thermoplastic glass composite laminates, incorporating layers of resin-impregnated stainless-steel mesh. Reinforcing methodologies such as hybridization are recently being adopted as a practical approach to increasing the energy-absorbing capacity of polymer composites. In the current paper, a multi-step hot press lamination method has been employed to fabricate the hybrid composite laminates strengthened with stainless-steel mesh layers. Several stacking sequences, metal mesh wire sizes, orientation and position relative to the impactor have been examined under various LVI energies. It was revealed that the LVI penetration energy was increased for the thermoplastic-based composite laminates reinforced with stainless-steel mesh layers. Furthermore, the LVI penetration energy threshold was significantly influenced by the metal mesh wire size, orientation and stacking sequence. Finally, the backlight method capability was assessed to detect the after-impact interlaminar damages.
期刊介绍:
Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).