Inga Popova, Ekaterina Savelyeva, Tatyana Degtyarevskaya, Dmitrii Babaskin, Andrei Vokhmintsev
{"title":"Evaluation of proteome dynamics: Implications for statistical confidence in mass spectrometric determination","authors":"Inga Popova, Ekaterina Savelyeva, Tatyana Degtyarevskaya, Dmitrii Babaskin, Andrei Vokhmintsev","doi":"10.1002/pmic.202300351","DOIUrl":null,"url":null,"abstract":"<p>Single-cell proteomics is currently far less productive than other approaches. Still, the proteomic community is having trouble adapting to the limitation of having to examine fewer cells than they would like. Studies on a small number of cells should be carefully planned to maximize the chances of success in this situation. This study aims to determine how sample size and measurement speed (slope)/variation affect the accuracy of a protein proteome mass spectrometric determination. The determination accuracy was shown to increase, and the false positive rate was shown to decrease as the sample size increased from 7 to 100 cells and the measurement slope/variation (S/V) ratio increased from 1 to 6. Furthermore, it was discovered that the number of cells in the sample increased the accuracy of this estimate. Thus, for 100 cells, the measurement S/V ratio was typically estimated to be very close to the real-world value, with a standard deviation of 0.35. For sample sizes from 7 to 100 cells, this accuracy was seen when calculating the measurement S/V ratio. The findings can help researchers plan experiments for mass spectroscopic protein proteome determination and other research purposes.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":"24 14","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202300351","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell proteomics is currently far less productive than other approaches. Still, the proteomic community is having trouble adapting to the limitation of having to examine fewer cells than they would like. Studies on a small number of cells should be carefully planned to maximize the chances of success in this situation. This study aims to determine how sample size and measurement speed (slope)/variation affect the accuracy of a protein proteome mass spectrometric determination. The determination accuracy was shown to increase, and the false positive rate was shown to decrease as the sample size increased from 7 to 100 cells and the measurement slope/variation (S/V) ratio increased from 1 to 6. Furthermore, it was discovered that the number of cells in the sample increased the accuracy of this estimate. Thus, for 100 cells, the measurement S/V ratio was typically estimated to be very close to the real-world value, with a standard deviation of 0.35. For sample sizes from 7 to 100 cells, this accuracy was seen when calculating the measurement S/V ratio. The findings can help researchers plan experiments for mass spectroscopic protein proteome determination and other research purposes.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.