Desingularization of 2D elliptic free-boundary problem with non-autonomous nonlinearity

IF 1.3 3区 数学 Q1 MATHEMATICS
Jie Wan
{"title":"Desingularization of 2D elliptic free-boundary problem with non-autonomous nonlinearity","authors":"Jie Wan","doi":"10.1017/prm.2024.48","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the existence and limiting behaviour of solutions to a semilinear elliptic equation arising from confined plasma problem in dimension two <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\[ \\begin{cases} -\\Delta u=\\lambda k(x)f(u) &amp; \\text{in}\\ D,\\\\ u= c &amp; \\displaystyle\\text{on}\\ \\partial D,\\\\ \\displaystyle - \\int_{\\partial D} \\frac{\\partial u}{\\partial \\nu}\\,{\\rm d}s=I, \\end{cases} \\]</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210524000489_eqnU1.png\"/> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D\\subseteq \\mathbb {R}^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline1.png\"/> </jats:alternatives> </jats:inline-formula> is a smooth bounded domain, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\nu$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline2.png\"/> </jats:alternatives> </jats:inline-formula> is the outward unit normal to the boundary <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\partial D$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline3.png\"/> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline4.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$I$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline5.png\"/> </jats:alternatives> </jats:inline-formula> are given constants and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$c$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline6.png\"/> </jats:alternatives> </jats:inline-formula> is an unknown constant. Under some assumptions on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$f$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline7.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$k$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline8.png\"/> </jats:alternatives> </jats:inline-formula>, we prove that there exists a family of solutions concentrating near strict local minimum points of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\Gamma (x)=({1}/{2})h(x,\\,x)- ({1}/{8\\pi })\\ln k(x)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline9.png\"/> </jats:alternatives> </jats:inline-formula> as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda \\to +\\infty$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline10.png\"/> </jats:alternatives> </jats:inline-formula>. Here <jats:inline-formula> <jats:alternatives> <jats:tex-math>$h(x,\\,x)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline11.png\"/> </jats:alternatives> </jats:inline-formula> is the Robin function of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$-\\Delta$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline12.png\"/> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline13.png\"/> </jats:alternatives> </jats:inline-formula>. The prescribed functions <jats:inline-formula> <jats:alternatives> <jats:tex-math>$f$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline14.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$k$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline15.png\"/> </jats:alternatives> </jats:inline-formula> can be very general. The result is proved by regarding <jats:inline-formula> <jats:alternatives> <jats:tex-math>$k$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline16.png\"/> </jats:alternatives> </jats:inline-formula> as a <jats:inline-formula> <jats:alternatives> <jats:tex-math>$measure$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline17.png\"/> </jats:alternatives> </jats:inline-formula> and using the vorticity method, that is, solving a maximization problem for vorticity and analysing the asymptotic behaviour of maximizers. Existence of solutions concentrating near several points is also obtained.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"34 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.48","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the existence and limiting behaviour of solutions to a semilinear elliptic equation arising from confined plasma problem in dimension two \[ \begin{cases} -\Delta u=\lambda k(x)f(u) & \text{in}\ D,\\ u= c & \displaystyle\text{on}\ \partial D,\\ \displaystyle - \int_{\partial D} \frac{\partial u}{\partial \nu}\,{\rm d}s=I, \end{cases} \] where $D\subseteq \mathbb {R}^2$ is a smooth bounded domain, $\nu$ is the outward unit normal to the boundary $\partial D$ , $\lambda$ and $I$ are given constants and $c$ is an unknown constant. Under some assumptions on $f$ and $k$ , we prove that there exists a family of solutions concentrating near strict local minimum points of $\Gamma (x)=({1}/{2})h(x,\,x)- ({1}/{8\pi })\ln k(x)$ as $\lambda \to +\infty$ . Here $h(x,\,x)$ is the Robin function of $-\Delta$ in $D$ . The prescribed functions $f$ and $k$ can be very general. The result is proved by regarding $k$ as a $measure$ and using the vorticity method, that is, solving a maximization problem for vorticity and analysing the asymptotic behaviour of maximizers. Existence of solutions concentrating near several points is also obtained.
具有非自主非线性的二维椭圆自由边界问题的去周期化
在本文中,我们考虑了由二维约束等离子体问题引起的半线性椭圆方程的解的存在性和极限行为。\frac{partial u}{partial\nu}\,{\rm d}s=I, (end{cases})] where $D\s=I, (end{cases}).\其中 $D\subseteq \mathbb {R}^2$ 是光滑有界域,$\nu$ 是边界 $\partial D$ 的向外单位法线,$\lambda$ 和 $I$ 是给定常数,$c$ 是未知常数。在一些关于 $f$ 和 $k$ 的假设下,我们证明当 $\lambda \to +\infty$ 时,存在一系列解集中在 $\Gamma (x)=({1}/{2})h(x,\,x)- ({1}/{8\pi })\ln k(x)$ 的严格局部最小点附近。这里的$h(x,\,x)$是$D$中$-\Delta$的罗宾函数。规定函数 $f$ 和 $k$ 可以是非常通用的。将 $k$ 视为 $measure$ 并使用涡度方法,即求解涡度最大化问题并分析最大化者的渐近行为,可以证明这一结果。此外,还得到了集中在几个点附近的解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信