{"title":"Desingularization of 2D elliptic free-boundary problem with non-autonomous nonlinearity","authors":"Jie Wan","doi":"10.1017/prm.2024.48","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the existence and limiting behaviour of solutions to a semilinear elliptic equation arising from confined plasma problem in dimension two <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\[ \\begin{cases} -\\Delta u=\\lambda k(x)f(u) & \\text{in}\\ D,\\\\ u= c & \\displaystyle\\text{on}\\ \\partial D,\\\\ \\displaystyle - \\int_{\\partial D} \\frac{\\partial u}{\\partial \\nu}\\,{\\rm d}s=I, \\end{cases} \\]</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210524000489_eqnU1.png\"/> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D\\subseteq \\mathbb {R}^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline1.png\"/> </jats:alternatives> </jats:inline-formula> is a smooth bounded domain, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\nu$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline2.png\"/> </jats:alternatives> </jats:inline-formula> is the outward unit normal to the boundary <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\partial D$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline3.png\"/> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline4.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$I$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline5.png\"/> </jats:alternatives> </jats:inline-formula> are given constants and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$c$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline6.png\"/> </jats:alternatives> </jats:inline-formula> is an unknown constant. Under some assumptions on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$f$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline7.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$k$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline8.png\"/> </jats:alternatives> </jats:inline-formula>, we prove that there exists a family of solutions concentrating near strict local minimum points of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\Gamma (x)=({1}/{2})h(x,\\,x)- ({1}/{8\\pi })\\ln k(x)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline9.png\"/> </jats:alternatives> </jats:inline-formula> as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda \\to +\\infty$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline10.png\"/> </jats:alternatives> </jats:inline-formula>. Here <jats:inline-formula> <jats:alternatives> <jats:tex-math>$h(x,\\,x)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline11.png\"/> </jats:alternatives> </jats:inline-formula> is the Robin function of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$-\\Delta$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline12.png\"/> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline13.png\"/> </jats:alternatives> </jats:inline-formula>. The prescribed functions <jats:inline-formula> <jats:alternatives> <jats:tex-math>$f$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline14.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$k$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline15.png\"/> </jats:alternatives> </jats:inline-formula> can be very general. The result is proved by regarding <jats:inline-formula> <jats:alternatives> <jats:tex-math>$k$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline16.png\"/> </jats:alternatives> </jats:inline-formula> as a <jats:inline-formula> <jats:alternatives> <jats:tex-math>$measure$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000489_inline17.png\"/> </jats:alternatives> </jats:inline-formula> and using the vorticity method, that is, solving a maximization problem for vorticity and analysing the asymptotic behaviour of maximizers. Existence of solutions concentrating near several points is also obtained.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"34 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.48","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the existence and limiting behaviour of solutions to a semilinear elliptic equation arising from confined plasma problem in dimension two \[ \begin{cases} -\Delta u=\lambda k(x)f(u) & \text{in}\ D,\\ u= c & \displaystyle\text{on}\ \partial D,\\ \displaystyle - \int_{\partial D} \frac{\partial u}{\partial \nu}\,{\rm d}s=I, \end{cases} \]where $D\subseteq \mathbb {R}^2$ is a smooth bounded domain, $\nu$ is the outward unit normal to the boundary $\partial D$, $\lambda$ and $I$ are given constants and $c$ is an unknown constant. Under some assumptions on $f$ and $k$, we prove that there exists a family of solutions concentrating near strict local minimum points of $\Gamma (x)=({1}/{2})h(x,\,x)- ({1}/{8\pi })\ln k(x)$ as $\lambda \to +\infty$. Here $h(x,\,x)$ is the Robin function of $-\Delta$ in $D$. The prescribed functions $f$ and $k$ can be very general. The result is proved by regarding $k$ as a $measure$ and using the vorticity method, that is, solving a maximization problem for vorticity and analysing the asymptotic behaviour of maximizers. Existence of solutions concentrating near several points is also obtained.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.