A pure dual approach for hedging Bermudan options

Aurélien Alfonsi, Ahmed Kebaier, Jérôme Lelong
{"title":"A pure dual approach for hedging Bermudan options","authors":"Aurélien Alfonsi, Ahmed Kebaier, Jérôme Lelong","doi":"arxiv-2404.18761","DOIUrl":null,"url":null,"abstract":"This paper develops a new dual approach to compute the hedging portfolio of a\nBermudan option and its initial value. It gives a \"purely dual\" algorithm\nfollowing the spirit of Rogers (2010) in the sense that it only relies on the\ndual pricing formula. The key is to rewrite the dual formula as an excess\nreward representation and to combine it with a strict convexification\ntechnique. The hedging strategy is then obtained by using a Monte Carlo method,\nsolving backward a sequence of least square problems. We show convergence\nresults for our algorithm and test it on many different Bermudan options.\nBeyond giving directly the hedging portfolio, the strength of the algorithm is\nto assess both the relevance of including financial instruments in the hedging\nportfolio and the effect of the rebalancing frequency.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.18761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a new dual approach to compute the hedging portfolio of a Bermudan option and its initial value. It gives a "purely dual" algorithm following the spirit of Rogers (2010) in the sense that it only relies on the dual pricing formula. The key is to rewrite the dual formula as an excess reward representation and to combine it with a strict convexification technique. The hedging strategy is then obtained by using a Monte Carlo method, solving backward a sequence of least square problems. We show convergence results for our algorithm and test it on many different Bermudan options. Beyond giving directly the hedging portfolio, the strength of the algorithm is to assess both the relevance of including financial instruments in the hedging portfolio and the effect of the rebalancing frequency.
百慕大期权对冲的纯粹二元方法
本文开发了一种新的对偶方法来计算百慕大期权的对冲组合及其初始值。它遵循 Rogers(2010)的精神,给出了一种 "纯对偶 "算法,即只依赖对偶定价公式。关键在于将对偶公式重写为超额回报表示,并将其与严格的凸化技术相结合。然后使用蒙特卡洛方法求解一连串最小平方问题,从而得到对冲策略。我们展示了算法的收敛性结果,并在许多不同的百慕大期权上对其进行了测试。除了直接给出对冲组合外,该算法的优势还在于评估在对冲组合中包含金融工具的相关性以及再平衡频率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信