Quantum Hamiltonian Learning for the Fermi-Hubbard Model

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Hongkang Ni, Haoya Li, Lexing Ying
{"title":"Quantum Hamiltonian Learning for the Fermi-Hubbard Model","authors":"Hongkang Ni,&nbsp;Haoya Li,&nbsp;Lexing Ying","doi":"10.1007/s10440-024-00651-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work proposes a protocol for Fermionic Hamiltonian learning. For the Hubbard model defined on a bounded-degree graph, the Heisenberg-limited scaling is achieved while allowing for state preparation and measurement errors. To achieve <span>\\(\\epsilon \\)</span>-accurate estimation for all parameters, only <span>\\(\\tilde{\\mathcal{O}}(\\epsilon ^{-1})\\)</span> total evolution time is needed, and the constant factor is independent of the system size. Moreover, our method only involves simple one or two-site Fermionic manipulations, which is desirable for experiment implementation.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"191 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00651-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a protocol for Fermionic Hamiltonian learning. For the Hubbard model defined on a bounded-degree graph, the Heisenberg-limited scaling is achieved while allowing for state preparation and measurement errors. To achieve \(\epsilon \)-accurate estimation for all parameters, only \(\tilde{\mathcal{O}}(\epsilon ^{-1})\) total evolution time is needed, and the constant factor is independent of the system size. Moreover, our method only involves simple one or two-site Fermionic manipulations, which is desirable for experiment implementation.

Abstract Image

Abstract Image

费米-哈伯德模型的量子哈密顿学习
这项研究提出了费米子哈密顿学习协议。对于定义在有界度图上的哈伯德模型,在允许状态准备和测量误差的情况下,实现了海森堡限制缩放。要实现对所有参数的(\epsilon \)精确估计,只需要(\tilde{\mathcal{O}}(\epsilon ^{-1}))总演化时间,而且常数因子与系统大小无关。此外,我们的方法只涉及简单的一个或两个费米子操作,这对于实验实现来说是非常理想的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信