Global boundedness and large time behaviour in a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant

IF 1.3 3区 数学 Q1 MATHEMATICS
Minghua Zhang, Chunlai Mu, Hongying Yang
{"title":"Global boundedness and large time behaviour in a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant","authors":"Minghua Zhang, Chunlai Mu, Hongying Yang","doi":"10.1017/prm.2024.54","DOIUrl":null,"url":null,"abstract":"This paper deals with the following quasilinear chemotaxis system with consumption of chemoattractant <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\[ \\left\\{\\begin{array}{@{}ll} u_t=\\Delta u^{m}-\\nabla\\cdot(u\\nabla v),\\quad &amp; x\\in \\Omega,\\quad t&gt;0,\\\\ v_t=\\Delta v-uv,\\quad &amp; x\\in \\Omega,\\quad t&gt;0\\\\ \\end{array}\\right. \\]</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210524000544_eqnU1.png\"/> </jats:alternatives> </jats:disp-formula>in a bounded domain <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\Omega \\subset \\mathbb {R}^N(N=3,\\,4,\\,5)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline1.png\"/> </jats:alternatives> </jats:inline-formula> with smooth boundary <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\partial \\Omega$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline2.png\"/> </jats:alternatives> </jats:inline-formula>. It is shown that if <jats:inline-formula> <jats:alternatives> <jats:tex-math>$m&gt;\\max \\{1,\\,\\frac {3N-2}{2N+2}\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline3.png\"/> </jats:alternatives> </jats:inline-formula>, for any reasonably smooth nonnegative initial data, the corresponding no-flux type initial-boundary value problem possesses a globally bounded weak solution. Furthermore, we prove that the solution converges to the spatially homogeneous equilibrium <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(\\bar {u}_0,\\,0)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline4.png\"/> </jats:alternatives> </jats:inline-formula> in an appropriate sense as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t\\rightarrow \\infty$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline5.png\"/> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\bar {u}_0=\\frac {1}{|\\Omega |}\\int _\\Omega u_0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline6.png\"/> </jats:alternatives> </jats:inline-formula>. This result not only partly extends the previous global boundedness result in Fan and Jin (<jats:italic>J. Math. Phys.</jats:italic>58 (2017), 011503) and Wang and Xiang (<jats:italic>Z. Angew. Math. Phys.</jats:italic>66 (2015), 3159–3179) to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$m&gt;\\frac {3N-2}{2N}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline7.png\"/> </jats:alternatives> </jats:inline-formula> in the case <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N\\geq 3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline8.png\"/> </jats:alternatives> </jats:inline-formula>, but also partly improves the global existence result in Zheng and Wang (<jats:italic>Discrete Contin. Dyn. Syst. Ser. B</jats:italic>22 (2017), 669–686) to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$m&gt;\\frac {3N}{2N+2}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline9.png\"/> </jats:alternatives> </jats:inline-formula> when <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N\\geq 2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline10.png\"/> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"77 3 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.54","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the following quasilinear chemotaxis system with consumption of chemoattractant \[ \left\{\begin{array}{@{}ll} u_t=\Delta u^{m}-\nabla\cdot(u\nabla v),\quad & x\in \Omega,\quad t>0,\\ v_t=\Delta v-uv,\quad & x\in \Omega,\quad t>0\\ \end{array}\right. \] in a bounded domain $\Omega \subset \mathbb {R}^N(N=3,\,4,\,5)$ with smooth boundary $\partial \Omega$ . It is shown that if $m>\max \{1,\,\frac {3N-2}{2N+2}\}$ , for any reasonably smooth nonnegative initial data, the corresponding no-flux type initial-boundary value problem possesses a globally bounded weak solution. Furthermore, we prove that the solution converges to the spatially homogeneous equilibrium $(\bar {u}_0,\,0)$ in an appropriate sense as $t\rightarrow \infty$ , where $\bar {u}_0=\frac {1}{|\Omega |}\int _\Omega u_0$ . This result not only partly extends the previous global boundedness result in Fan and Jin (J. Math. Phys.58 (2017), 011503) and Wang and Xiang (Z. Angew. Math. Phys.66 (2015), 3159–3179) to $m>\frac {3N-2}{2N}$ in the case $N\geq 3$ , but also partly improves the global existence result in Zheng and Wang (Discrete Contin. Dyn. Syst. Ser. B22 (2017), 669–686) to $m>\frac {3N}{2N+2}$ when $N\geq 2$ .
具有趋化吸引剂消耗的高维准线性趋化系统的全局有界性和大时间行为
本文讨论了以下具有趋化物质消耗的准线性趋化系统: u_t=\Delta u^{m}-\nabla\cdot(u\nabla v),\quad &;xin \Omega,\quad t>0,\v_t=\Delta v-uv,\quad & xin \Omega,\quad t>0\end\{array}\right.\在一个有界域 $\Omega\subset \mathbb {R}^N(N=3,\,4,\,5)$ 中,具有光滑边界 $\partial \Omega$ 。结果表明,如果 $m>\max \{1,\,\frac {3N-2}{2N+2}\}$ ,对于任何合理光滑的非负初始数据,相应的无流型初界值问题都有一个全局有界的弱解。此外,我们证明该解在适当意义上收敛于空间均质均衡 $(\bar {u}_0,\,0)$ ,即 $t\rightarrow \infty$ ,其中 $\bar {u}_0=\frac {1}{|\Omega |}\int _\Omega u_0$ 。这个结果不仅部分扩展了之前在 Fan 和 Jin (J. Math.Phys.58 (2017), 011503) 和 Wang and Xiang (Z. Angew.Math.Phys.66 (2015), 3159-3179) 中的全局有界性结果扩展到 $m>\frac {3N-2}{2N}$ 在 $N\geq 3$ 的情况下,而且部分改进了 Zheng 和 Wang (Discrete Contin. Dyn.Dyn.Syst.B22 (2017), 669-686)中的全局存在性结果,当 $N\geq 2$ 时,结果为 $m>\frac {3N}{2N+2}$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信