{"title":"Global boundedness and large time behaviour in a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant","authors":"Minghua Zhang, Chunlai Mu, Hongying Yang","doi":"10.1017/prm.2024.54","DOIUrl":null,"url":null,"abstract":"This paper deals with the following quasilinear chemotaxis system with consumption of chemoattractant <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\[ \\left\\{\\begin{array}{@{}ll} u_t=\\Delta u^{m}-\\nabla\\cdot(u\\nabla v),\\quad & x\\in \\Omega,\\quad t>0,\\\\ v_t=\\Delta v-uv,\\quad & x\\in \\Omega,\\quad t>0\\\\ \\end{array}\\right. \\]</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0308210524000544_eqnU1.png\"/> </jats:alternatives> </jats:disp-formula>in a bounded domain <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\Omega \\subset \\mathbb {R}^N(N=3,\\,4,\\,5)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline1.png\"/> </jats:alternatives> </jats:inline-formula> with smooth boundary <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\partial \\Omega$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline2.png\"/> </jats:alternatives> </jats:inline-formula>. It is shown that if <jats:inline-formula> <jats:alternatives> <jats:tex-math>$m>\\max \\{1,\\,\\frac {3N-2}{2N+2}\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline3.png\"/> </jats:alternatives> </jats:inline-formula>, for any reasonably smooth nonnegative initial data, the corresponding no-flux type initial-boundary value problem possesses a globally bounded weak solution. Furthermore, we prove that the solution converges to the spatially homogeneous equilibrium <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(\\bar {u}_0,\\,0)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline4.png\"/> </jats:alternatives> </jats:inline-formula> in an appropriate sense as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t\\rightarrow \\infty$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline5.png\"/> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\bar {u}_0=\\frac {1}{|\\Omega |}\\int _\\Omega u_0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline6.png\"/> </jats:alternatives> </jats:inline-formula>. This result not only partly extends the previous global boundedness result in Fan and Jin (<jats:italic>J. Math. Phys.</jats:italic>58 (2017), 011503) and Wang and Xiang (<jats:italic>Z. Angew. Math. Phys.</jats:italic>66 (2015), 3159–3179) to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$m>\\frac {3N-2}{2N}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline7.png\"/> </jats:alternatives> </jats:inline-formula> in the case <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N\\geq 3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline8.png\"/> </jats:alternatives> </jats:inline-formula>, but also partly improves the global existence result in Zheng and Wang (<jats:italic>Discrete Contin. Dyn. Syst. Ser. B</jats:italic>22 (2017), 669–686) to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$m>\\frac {3N}{2N+2}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline9.png\"/> </jats:alternatives> </jats:inline-formula> when <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N\\geq 2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000544_inline10.png\"/> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"77 3 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.54","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with the following quasilinear chemotaxis system with consumption of chemoattractant \[ \left\{\begin{array}{@{}ll} u_t=\Delta u^{m}-\nabla\cdot(u\nabla v),\quad & x\in \Omega,\quad t>0,\\ v_t=\Delta v-uv,\quad & x\in \Omega,\quad t>0\\ \end{array}\right. \]in a bounded domain $\Omega \subset \mathbb {R}^N(N=3,\,4,\,5)$ with smooth boundary $\partial \Omega$. It is shown that if $m>\max \{1,\,\frac {3N-2}{2N+2}\}$, for any reasonably smooth nonnegative initial data, the corresponding no-flux type initial-boundary value problem possesses a globally bounded weak solution. Furthermore, we prove that the solution converges to the spatially homogeneous equilibrium $(\bar {u}_0,\,0)$ in an appropriate sense as $t\rightarrow \infty$, where $\bar {u}_0=\frac {1}{|\Omega |}\int _\Omega u_0$. This result not only partly extends the previous global boundedness result in Fan and Jin (J. Math. Phys.58 (2017), 011503) and Wang and Xiang (Z. Angew. Math. Phys.66 (2015), 3159–3179) to $m>\frac {3N-2}{2N}$ in the case $N\geq 3$, but also partly improves the global existence result in Zheng and Wang (Discrete Contin. Dyn. Syst. Ser. B22 (2017), 669–686) to $m>\frac {3N}{2N+2}$ when $N\geq 2$.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.