{"title":"Stability Analysis of Axially Functionally Graded Heavy Column","authors":"B. K. Lee, J. K. Lee","doi":"10.1007/s11029-024-10190-6","DOIUrl":null,"url":null,"abstract":"<p>The stability of axially functionally graded (AFG) heavy columns was analyzed. Consideration in stability analysis of the column is given to the free vibration and bucking problems. The mass density and Young’s modulus of the AFG heavy column vary along the column axis through a power-law function. Unified modeling of the differential equations with the associated boundary conditions governing the deformed shape of the free vibrations and buckling of the column was developed. Using a combination of direct numerical integration method and numerical solution method of nonlinear equation, differential equations were solved to calculate the natural frequency and the critical buckling load. Calculation results for the natural frequency and buckling load compare well with the FEM results. As a result of numerical experiments, the effects of material and geometric properties on the natural frequency and the buckling load were reported and discussed in detail.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"62 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10190-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The stability of axially functionally graded (AFG) heavy columns was analyzed. Consideration in stability analysis of the column is given to the free vibration and bucking problems. The mass density and Young’s modulus of the AFG heavy column vary along the column axis through a power-law function. Unified modeling of the differential equations with the associated boundary conditions governing the deformed shape of the free vibrations and buckling of the column was developed. Using a combination of direct numerical integration method and numerical solution method of nonlinear equation, differential equations were solved to calculate the natural frequency and the critical buckling load. Calculation results for the natural frequency and buckling load compare well with the FEM results. As a result of numerical experiments, the effects of material and geometric properties on the natural frequency and the buckling load were reported and discussed in detail.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.