Optimal Bridge, Twin Bridges and Beyond: Inserting Edges into a Road Network to Minimize the Constrained Diameters

Zhidan Feng, Henning Fernau, Binhai Zhu
{"title":"Optimal Bridge, Twin Bridges and Beyond: Inserting Edges into a Road Network to Minimize the Constrained Diameters","authors":"Zhidan Feng, Henning Fernau, Binhai Zhu","doi":"arxiv-2404.19164","DOIUrl":null,"url":null,"abstract":"Given a road network modelled as a planar straight-line graph $G=(V,E)$ with\n$|V|=n$, let $(u,v)\\in V\\times V$, the shortest path (distance) between $u,v$\nis denoted as $\\delta_G(u,v)$. Let $\\delta(G)=\\max_{(u,v)}\\delta_G(u,v)$, for\n$(u,v)\\in V\\times V$, which is called the diameter of $G$. Given a disconnected\nroad network modelled as two disjoint trees $T_1$ and $T_2$, this paper first\naims at inserting one and two edges (bridges) between them to minimize the\n(constrained) diameter $\\delta(T_1\\cup T_2\\cup I_j)$ going through the inserted\nedges, where $I_j, j=1,2$, is the set of inserted edges with $|I_1|=1$ and\n$|I_2|=2$. The corresponding problems are called the {\\em optimal bridge} and\n{\\em twin bridges} problems. Since when more than one edge are inserted between\ntwo trees the resulting graph is becoming more complex, for the general network\n$G$ we consider the problem of inserting a minimum of $k$ edges such that the\nshortest distances between a set of $m$ pairs $P=\\{(u_i,v_i)\\mid u_i,v_i\\in V,\ni\\in [m]\\}$, $\\delta_G(u_i,v_i)$'s, are all decreased. The main results of this paper are summarized as follows: (1) We show that the optimal bridge problem can be solved in $O(n^2)$ time\nand that a variation of it has a near-quadratic lower bound unless SETH fails.\nThe proof also implies that the famous 3-SUM problem does have a near-quadratic\nlower bound for large integers, e.g., each of the $n$ input integers has\n$\\Omega(\\log n)$ decimal digits. We then give a simple factor-2 $O(n\\log n)$\ntime approximation algorithm for the optimal bridge problem. (2) We present an $O(n^4)$ time algorithm to solve the twin bridges problem,\nexploiting some new property not in the optimal bridge problem. (3) For the general problem of inserting $k$ edges to reduce the (graph)\ndistances between $m$ given pairs, we show that the problem is NP-complete.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.19164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a road network modelled as a planar straight-line graph $G=(V,E)$ with $|V|=n$, let $(u,v)\in V\times V$, the shortest path (distance) between $u,v$ is denoted as $\delta_G(u,v)$. Let $\delta(G)=\max_{(u,v)}\delta_G(u,v)$, for $(u,v)\in V\times V$, which is called the diameter of $G$. Given a disconnected road network modelled as two disjoint trees $T_1$ and $T_2$, this paper first aims at inserting one and two edges (bridges) between them to minimize the (constrained) diameter $\delta(T_1\cup T_2\cup I_j)$ going through the inserted edges, where $I_j, j=1,2$, is the set of inserted edges with $|I_1|=1$ and $|I_2|=2$. The corresponding problems are called the {\em optimal bridge} and {\em twin bridges} problems. Since when more than one edge are inserted between two trees the resulting graph is becoming more complex, for the general network $G$ we consider the problem of inserting a minimum of $k$ edges such that the shortest distances between a set of $m$ pairs $P=\{(u_i,v_i)\mid u_i,v_i\in V, i\in [m]\}$, $\delta_G(u_i,v_i)$'s, are all decreased. The main results of this paper are summarized as follows: (1) We show that the optimal bridge problem can be solved in $O(n^2)$ time and that a variation of it has a near-quadratic lower bound unless SETH fails. The proof also implies that the famous 3-SUM problem does have a near-quadratic lower bound for large integers, e.g., each of the $n$ input integers has $\Omega(\log n)$ decimal digits. We then give a simple factor-2 $O(n\log n)$ time approximation algorithm for the optimal bridge problem. (2) We present an $O(n^4)$ time algorithm to solve the twin bridges problem, exploiting some new property not in the optimal bridge problem. (3) For the general problem of inserting $k$ edges to reduce the (graph) distances between $m$ given pairs, we show that the problem is NP-complete.
最佳桥梁、双桥及其他:在路网中插入边缘以最小化受限直径
给定一个以平面直线图$G=(V,E)$为模型且$|V|=n$的道路网络,让$(u,v)\in V\times V$,$u,v$之间的最短路径(距离)表示为$\delta_G(u,v)$。对于 $(u,v)\in V\times V$,让 $\delta(G)=\max_{(u,v)}\delta_G(u,v)$ 称为 $G$ 的直径。给定一个以两棵互不相交的树 $T_1$ 和 $T_2$ 为模型的断开路网,本文首先要在它们之间插入一条和两条边(桥),以最小化经过插入边的(受约束)直径 $/delta(T_1\cup T_2\cup I_j)$,其中 $I_j, j=1,2$ 是插入边的集合,$|I_1|=1$ 和$|I_2|=2$。相应的问题称为{em optimal bridge} 和{em twin bridges} 问题。由于在两棵树之间插入不止一条边时,生成的图会变得越来越复杂,因此对于一般网络$G$,我们考虑的问题是插入最少 $k$ 条边,使得一组 $m$ 对$P=\{(u_i,v_i)\mid u_i,v_i\in V,i\in [m]\}$, $\delta_G(u_i,v_i)$'s之间的最短距离都减小。本文的主要结果总结如下:(1) 我们证明了最优桥问题可以在 $O(n^2)$ 时间内求解,而且除非 SETH 失效,否则它的一个变种有一个近似四则运算的下界。这个证明还暗示了著名的 3-SUM 问题对于大整数确实有一个近似四则运算的下界,例如,每个 $n$ 输入整数都有 $\Omega(\log n)$ 小数位数。然后,我们给出了最优桥问题的一个简单的系数-2 $O(n\log n)$时间近似算法。(2) 我们利用最优桥梁问题中不存在的一些新特性,提出了一种用时 $O(n^4)$ 的算法来解决双桥问题。(3) 对于插入 $k$ 边以减少 $m$ 给定线对之间(图)距离的一般问题,我们证明该问题是 NP-完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信