Deterministic Optimal Control on Riemannian Manifolds Under Probability Knowledge of the Initial Condition

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Frédéric Jean, Othmane Jerhaoui, Hasnaa Zidani
{"title":"Deterministic Optimal Control on Riemannian Manifolds Under Probability Knowledge of the Initial Condition","authors":"Frédéric Jean, Othmane Jerhaoui, Hasnaa Zidani","doi":"10.1137/23m1575251","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Mathematical Analysis, Volume 56, Issue 3, Page 3326-3356, June 2024. <br/> Abstract. In this article, we study a Mayer optimal control problem on the space of Borel probability measures over a compact Riemannian manifold [math]. This is motivated by certain situations where a central planner of a deterministic controlled system has only imperfect information on the initial state of the system. The lack of information here is very specific. It is described by a Borel probability measure along which the initial state is distributed. We define a new notion of viscosity in this space by taking test functions that are directionally differentiable and can be written as a difference of two semiconvex functions. With this choice of test functions, we extend the notion of viscosity to Hamilton–Jacobi–Bellman equations in Wasserstein spaces and we establish that the value function is the unique viscosity solution of a Hamilton–Jacobi–Bellman equation in the Wasserstein space over [math].","PeriodicalId":51150,"journal":{"name":"SIAM Journal on Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1575251","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Mathematical Analysis, Volume 56, Issue 3, Page 3326-3356, June 2024.
Abstract. In this article, we study a Mayer optimal control problem on the space of Borel probability measures over a compact Riemannian manifold [math]. This is motivated by certain situations where a central planner of a deterministic controlled system has only imperfect information on the initial state of the system. The lack of information here is very specific. It is described by a Borel probability measure along which the initial state is distributed. We define a new notion of viscosity in this space by taking test functions that are directionally differentiable and can be written as a difference of two semiconvex functions. With this choice of test functions, we extend the notion of viscosity to Hamilton–Jacobi–Bellman equations in Wasserstein spaces and we establish that the value function is the unique viscosity solution of a Hamilton–Jacobi–Bellman equation in the Wasserstein space over [math].
初始条件概率知识下的黎曼曲面确定性最优控制
SIAM 数学分析期刊》,第 56 卷,第 3 期,第 3326-3356 页,2024 年 6 月。 摘要本文研究紧凑黎曼流形[math]上 Borel 概率度量空间的 Mayer 最佳控制问题。这是因为在某些情况下,确定性控制系统的中央规划者只有系统初始状态的不完全信息。这里的信息缺失非常具体。它由一个伯尔概率度量来描述,初始状态沿着该概率度量分布。我们在这个空间中定义了一个新的粘性概念,即测试函数是可定向微分的,并且可以写成两个半凸函数的差值。通过这种检验函数的选择,我们将粘性概念扩展到了瓦瑟斯坦空间中的汉密尔顿-贾可比-贝尔曼方程,并确定了值函数是[math]上瓦瑟斯坦空间中汉密尔顿-贾可比-贝尔曼方程的唯一粘性解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.00%
发文量
175
审稿时长
12 months
期刊介绍: SIAM Journal on Mathematical Analysis (SIMA) features research articles of the highest quality employing innovative analytical techniques to treat problems in the natural sciences. Every paper has content that is primarily analytical and that employs mathematical methods in such areas as partial differential equations, the calculus of variations, functional analysis, approximation theory, harmonic or wavelet analysis, or dynamical systems. Additionally, every paper relates to a model for natural phenomena in such areas as fluid mechanics, materials science, quantum mechanics, biology, mathematical physics, or to the computational analysis of such phenomena. Submission of a manuscript to a SIAM journal is representation by the author that the manuscript has not been published or submitted simultaneously for publication elsewhere. Typical papers for SIMA do not exceed 35 journal pages. Substantial deviations from this page limit require that the referees, editor, and editor-in-chief be convinced that the increased length is both required by the subject matter and justified by the quality of the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信