{"title":"Therapeutic antibodies: technical points to consider in tissue cross-reactivity studies","authors":"Etsuko FUJII, Atsuhiko KATO","doi":"10.1293/tox.2024-0033","DOIUrl":null,"url":null,"abstract":"</p><p>Tissue cross-reactivity (TCR) studies for the development of therapeutic antibodies are conducted to estimate any possible binding sites within the human body that can be affected by the antibody when assessing safety in humans. Any possible binding sites include specific binding sites of the antibody to its target antigen and nonspecific or off-target binding sites. In TCR studies the therapeutic antibodies and immunohistochemistry (IHC) of frozen tissues must be applied in assays. However, there are technical issues with applying a therapeutic antibody or test article to IHC, such as human-on-human staining, difficulty in applying the test article to IHC, and retention of the target antigen in frozen sections. In the current review, we introduce three case studies in which these technical issues were addressed, and propose a practical scheme for points to consider when conducting a TCR study. Information on the target antigen distribution obtained through robust assays and case-by-case strategies were found to be useful for understanding and assessing the relevance of toxic effects between animals and humans. Thus, we anticipate that by considering the points discussed in the current review and combining the data with information on the biological features of the target antigens and therapeutic antibodies, it will be possible to predict safety risks in humans with higher accuracy. </p>\n<p></p>","PeriodicalId":17437,"journal":{"name":"Journal of Toxicologic Pathology","volume":"107 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1293/tox.2024-0033","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue cross-reactivity (TCR) studies for the development of therapeutic antibodies are conducted to estimate any possible binding sites within the human body that can be affected by the antibody when assessing safety in humans. Any possible binding sites include specific binding sites of the antibody to its target antigen and nonspecific or off-target binding sites. In TCR studies the therapeutic antibodies and immunohistochemistry (IHC) of frozen tissues must be applied in assays. However, there are technical issues with applying a therapeutic antibody or test article to IHC, such as human-on-human staining, difficulty in applying the test article to IHC, and retention of the target antigen in frozen sections. In the current review, we introduce three case studies in which these technical issues were addressed, and propose a practical scheme for points to consider when conducting a TCR study. Information on the target antigen distribution obtained through robust assays and case-by-case strategies were found to be useful for understanding and assessing the relevance of toxic effects between animals and humans. Thus, we anticipate that by considering the points discussed in the current review and combining the data with information on the biological features of the target antigens and therapeutic antibodies, it will be possible to predict safety risks in humans with higher accuracy.
期刊介绍:
JTP is a scientific journal that publishes original studies in the field of toxicological pathology and in a wide variety of other related fields. The main scope of the journal is listed below.
Administrative Opinions of Policymakers and Regulatory Agencies
Adverse Events
Carcinogenesis
Data of A Predominantly Negative Nature
Drug-Induced Hematologic Toxicity
Embryological Pathology
High Throughput Pathology
Historical Data of Experimental Animals
Immunohistochemical Analysis
Molecular Pathology
Nomenclature of Lesions
Non-mammal Toxicity Study
Result or Lesion Induced by Chemicals of Which Names Hidden on Account of the Authors
Technology and Methodology Related to Toxicological Pathology
Tumor Pathology; Neoplasia and Hyperplasia
Ultrastructural Analysis
Use of Animal Models.