{"title":"Empirical likelihood MLE for joint modeling right censored survival data with longitudinal covariates","authors":"Jian-Jian Ren, Yuyin Shi","doi":"10.1007/s10463-024-00899-5","DOIUrl":null,"url":null,"abstract":"<div><p>Up to now, almost all existing methods for joint modeling survival data and longitudinal data rely on parametric/semiparametric assumptions on longitudinal covariate process, and the resulting inferences critically depend on the validity of these assumptions that are difficult to verify in practice. The kernel method-based procedures rely on choices of kernel function and bandwidth, and none of the existing methods provides estimate for the baseline distribution in proportional hazards model. This article proposes a proportional hazards model for joint modeling right censored survival data and intensive longitudinal data taking into account of within-subject historic change patterns. Without any parametric/semiparametric assumptions or use of kernel method, we derive empirical likelihood-based maximum likelihood estimators and partial likelihood estimators for the regression parameter and the baseline distribution function. We develop stable computing algorithms and present some simulation results. Analyses of real dataset are conducted for smoking cessation data and liver disease data.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-024-00899-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Up to now, almost all existing methods for joint modeling survival data and longitudinal data rely on parametric/semiparametric assumptions on longitudinal covariate process, and the resulting inferences critically depend on the validity of these assumptions that are difficult to verify in practice. The kernel method-based procedures rely on choices of kernel function and bandwidth, and none of the existing methods provides estimate for the baseline distribution in proportional hazards model. This article proposes a proportional hazards model for joint modeling right censored survival data and intensive longitudinal data taking into account of within-subject historic change patterns. Without any parametric/semiparametric assumptions or use of kernel method, we derive empirical likelihood-based maximum likelihood estimators and partial likelihood estimators for the regression parameter and the baseline distribution function. We develop stable computing algorithms and present some simulation results. Analyses of real dataset are conducted for smoking cessation data and liver disease data.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.