Strong convergence of adaptive time-stepping schemes for the stochastic Allen–Cahn equation

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Chuchu Chen, Tonghe Dang, Jialin Hong
{"title":"Strong convergence of adaptive time-stepping schemes for the stochastic Allen–Cahn equation","authors":"Chuchu Chen, Tonghe Dang, Jialin Hong","doi":"10.1093/imanum/drae009","DOIUrl":null,"url":null,"abstract":"It is known from Beccari et al. (2019) that the standard explicit Euler-type scheme (such as the exponential Euler and the linear-implicit Euler schemes) with a uniform timestep, though computationally efficient, may diverge for the stochastic Allen–Cahn equation. To overcome the divergence, this paper proposes and analyzes adaptive time-stepping schemes, which adapt the timestep at each iteration to control numerical solutions from instability. The a priori estimates in $\\mathscr{C}(\\mathscr{O})$-norm and $\\dot{H}^{\\beta }(\\mathscr{O})$-norm of numerical solutions are established provided the adaptive timestep function is suitably bounded, which plays a key role in the convergence analysis. We show that the adaptive time-stepping schemes converge strongly with order $\\frac{\\beta }{2}$ in time and $\\frac{\\beta }{d}$ in space with $d$ ($d=1,2,3$) being the dimension and $\\beta \\in (0,2]$. Numerical experiments show that the adaptive time-stepping schemes are simple to implement and at a lower computational cost than a scheme with the uniform timestep.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae009","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

It is known from Beccari et al. (2019) that the standard explicit Euler-type scheme (such as the exponential Euler and the linear-implicit Euler schemes) with a uniform timestep, though computationally efficient, may diverge for the stochastic Allen–Cahn equation. To overcome the divergence, this paper proposes and analyzes adaptive time-stepping schemes, which adapt the timestep at each iteration to control numerical solutions from instability. The a priori estimates in $\mathscr{C}(\mathscr{O})$-norm and $\dot{H}^{\beta }(\mathscr{O})$-norm of numerical solutions are established provided the adaptive timestep function is suitably bounded, which plays a key role in the convergence analysis. We show that the adaptive time-stepping schemes converge strongly with order $\frac{\beta }{2}$ in time and $\frac{\beta }{d}$ in space with $d$ ($d=1,2,3$) being the dimension and $\beta \in (0,2]$. Numerical experiments show that the adaptive time-stepping schemes are simple to implement and at a lower computational cost than a scheme with the uniform timestep.
随机艾伦-卡恩方程的自适应时间步进方案的强收敛性
根据 Beccari 等人 (2019) 的研究可知,对于随机 Allen-Cahn 方程,具有统一时间步长的标准显式欧拉方案(如指数欧拉和线性隐式欧拉方案)虽然计算效率高,但可能会发散。为了克服发散问题,本文提出并分析了自适应时间步长方案,该方案在每次迭代时调整时间步长,以控制数值解的不稳定性。在自适应时间步函数适当受限的前提下,建立了数值解在 $\mathscr{C}(\mathscr{O})$-norm 和 $\dot{H}^{\beta }(\mathscr{O})$-norm 下的先验估计,这在收敛性分析中起着关键作用。我们证明,自适应时间步进方案在时间上以 $\frac{beta }{2}$ 的阶强收敛,在空间上以 $\frac{beta }{d}$ 的阶强收敛,其中 $d$ ($d=1,2,3$)为维度,$\beta 在 (0,2]$ 内。数值实验表明,自适应时间步长方案实施简单,计算成本低于统一时间步长方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信