Research on vehicle path planning of automated guided vehicle with simultaneous pickup and delivery with mixed time windows

IF 2.5 Q2 ENGINEERING, INDUSTRIAL
Zhengrui Jiang, Wang Chen, Xiaojun Zheng, Feng Gao
{"title":"Research on vehicle path planning of automated guided vehicle with simultaneous pickup and delivery with mixed time windows","authors":"Zhengrui Jiang,&nbsp;Wang Chen,&nbsp;Xiaojun Zheng,&nbsp;Feng Gao","doi":"10.1049/cim2.12105","DOIUrl":null,"url":null,"abstract":"<p>The authors investigate new Automated Guided Vehicle (AGV) Routing Problem with Simultaneous Pickup and Delivery with Mixed Time Windows (VRPSPDMTW) in smart workshops, a variation of the classic Vehicle Routing Problem (VRP). A mixed time window vehicle routing model was developed for simultaneous deliveries. This model reduces the cost of AGVs used and distribution cost, along with time window penalties. To address this complex challenge, a Hybrid Adaptive Genetic Algorithm using Variable Neighbourhood Search (AGA-VNS) is proposed. This algorithm enhances the genetic algorithm's local search capabilities while preserving solution diversity, thereby improving both efficiency and quality of solutions. Comprehensive computational experiments are conducted, which include both VRPSPDTW test benchmark and real-world smart factory instance studies. The outcomes reveal that the AGA-VNS algorithm outperforms both professional solver software and advanced heuristic methods significantly. Moreover, the newly developed mixed time window model is more aligned with the requirements of real-world production processes compared to the traditional time window model. Thus, this research not only presents novel insights into the domain of vehicle routing problems but also demonstrates its significant applicability and potential in the background of intelligent workshops.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12105","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

The authors investigate new Automated Guided Vehicle (AGV) Routing Problem with Simultaneous Pickup and Delivery with Mixed Time Windows (VRPSPDMTW) in smart workshops, a variation of the classic Vehicle Routing Problem (VRP). A mixed time window vehicle routing model was developed for simultaneous deliveries. This model reduces the cost of AGVs used and distribution cost, along with time window penalties. To address this complex challenge, a Hybrid Adaptive Genetic Algorithm using Variable Neighbourhood Search (AGA-VNS) is proposed. This algorithm enhances the genetic algorithm's local search capabilities while preserving solution diversity, thereby improving both efficiency and quality of solutions. Comprehensive computational experiments are conducted, which include both VRPSPDTW test benchmark and real-world smart factory instance studies. The outcomes reveal that the AGA-VNS algorithm outperforms both professional solver software and advanced heuristic methods significantly. Moreover, the newly developed mixed time window model is more aligned with the requirements of real-world production processes compared to the traditional time window model. Thus, this research not only presents novel insights into the domain of vehicle routing problems but also demonstrates its significant applicability and potential in the background of intelligent workshops.

Abstract Image

混合时间窗口下同时取货和送货的自动导引车的车辆路径规划研究
作者研究了智能车间中带有混合时间窗口同时取货和交货(VRPSPDMTW)的新型自动导引车(AGV)路由问题,这是经典车辆路由问题(VRP)的一种变体。针对同时交付问题,开发了一种混合时间窗车辆路由模型。该模型降低了 AGV 的使用成本、配送成本以及时间窗口惩罚。为应对这一复杂挑战,提出了一种使用可变邻域搜索的混合自适应遗传算法(AGA-VNS)。该算法增强了遗传算法的局部搜索能力,同时保留了解决方案的多样性,从而提高了解决方案的效率和质量。本文进行了全面的计算实验,包括 VRPSPDTW 测试基准和真实世界智能工厂实例研究。结果表明,AGA-VNS 算法的性能明显优于专业求解软件和先进的启发式方法。此外,与传统的时间窗模型相比,新开发的混合时间窗模型更符合实际生产流程的要求。因此,这项研究不仅对车辆路由问题提出了新的见解,还证明了其在智能车间背景下的重要适用性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Collaborative Intelligent Manufacturing
IET Collaborative Intelligent Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
2.40%
发文量
25
审稿时长
20 weeks
期刊介绍: IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly. The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信