A Zero-Shot Learning Approach for Task Allocation Optimization in Cyber-Physical Systems

Eliseu Pereira;João Reis;Rosaldo J. F. Rossetti;Gil Gonçalves
{"title":"A Zero-Shot Learning Approach for Task Allocation Optimization in Cyber-Physical Systems","authors":"Eliseu Pereira;João Reis;Rosaldo J. F. Rossetti;Gil Gonçalves","doi":"10.1109/TICPS.2024.3392151","DOIUrl":null,"url":null,"abstract":"The design and reorganization of Cyber-Physical Systems (CPSs) faces challenges due to the growing number of interconnected devices. To effectively handle disruptions and improve performance, rapid CPS design and development is crucial. The Task Resources Estimator and Allocation Optimizer (TREAO) addresses these challenges, by simulating and optimizing the tasks assignment to the CPS machines, recommending suitable software layouts for the CPS characteristics. It employs Zero-Shot Learning (ZSL) to predict task requirements in heterogeneous devices, enabling the characterization of software pipeline execution in distributed systems. The Genetic Algorithm (GA) component then optimizes the task assignment across available machines. Through experiments, the tool is evaluated for task characterization, CPS modeling and optimization performance. TREAO, when compared with similar tools, allows the simulation of more resource usage metrics (CPU, RAM, processing time and network delay) and increases flexibility in heterogeneous CPSs by predicting the task execution behavior and optimizing the task assignment.","PeriodicalId":100640,"journal":{"name":"IEEE Transactions on Industrial Cyber-Physical Systems","volume":"2 ","pages":"90-97"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10506599/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The design and reorganization of Cyber-Physical Systems (CPSs) faces challenges due to the growing number of interconnected devices. To effectively handle disruptions and improve performance, rapid CPS design and development is crucial. The Task Resources Estimator and Allocation Optimizer (TREAO) addresses these challenges, by simulating and optimizing the tasks assignment to the CPS machines, recommending suitable software layouts for the CPS characteristics. It employs Zero-Shot Learning (ZSL) to predict task requirements in heterogeneous devices, enabling the characterization of software pipeline execution in distributed systems. The Genetic Algorithm (GA) component then optimizes the task assignment across available machines. Through experiments, the tool is evaluated for task characterization, CPS modeling and optimization performance. TREAO, when compared with similar tools, allows the simulation of more resource usage metrics (CPU, RAM, processing time and network delay) and increases flexibility in heterogeneous CPSs by predicting the task execution behavior and optimizing the task assignment.
网络物理系统任务分配优化的零点学习方法
由于互联设备的数量不断增加,网络物理系统(CPS)的设计和重组面临着挑战。为了有效应对干扰和提高性能,快速的 CPS 设计和开发至关重要。任务资源估算器和分配优化器(TREAO)通过模拟和优化 CPS 机器的任务分配,推荐适合 CPS 特点的软件布局,来应对这些挑战。它采用零点学习(Zero-Shot Learning,ZSL)来预测异构设备中的任务需求,从而对分布式系统中的软件流水线执行进行鉴定。然后,遗传算法(GA)组件在可用机器之间优化任务分配。通过实验,对该工具的任务特征描述、CPS 建模和优化性能进行了评估。与同类工具相比,TREAO 可以模拟更多的资源使用指标(CPU、RAM、处理时间和网络延迟),并通过预测任务执行行为和优化任务分配提高异构 CPS 的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信