Giuliana C. Coatti, Nirbhayaditya Vaghela, Pulak Gillurkar, Shih-Hsing Leir, Ann Harris
{"title":"A promoter-dependent upstream activator augments CFTR expression in diverse epithelial cell types","authors":"Giuliana C. Coatti, Nirbhayaditya Vaghela, Pulak Gillurkar, Shih-Hsing Leir, Ann Harris","doi":"10.1016/j.bbagrm.2024.195031","DOIUrl":null,"url":null,"abstract":"<div><p>The cystic fibrosis transmembrane conductance regulator (<em>CFTR</em>) gene encodes an anion-selective channel found in epithelial cell membranes. Mutations in <em>CFTR</em> cause cystic fibrosis (CF), an inherited disorder that impairs epithelial function in multiple organs. Most men with CF are infertile due to loss of intact genital ducts. Here we investigated a novel epididymis-selective <em>cis</em>-regulatory element (CRE), located within a peak of open chromatin at -9.5 kb 5′ to the <em>CFTR</em> gene promoter. Activation of the -9.5 kb CRE alone by CRISPRa had no impact on <em>CFTR</em> gene expression. However, CRISPRa co-activation of the -9.5 kb CRE and the <em>CFTR</em> gene promoter in epididymis cells significantly augmented CFTR mRNA and protein expression when compared to promoter activation alone. This increase was accompanied by enhanced chromatin accessibility at both sites. Furthermore, the combined CRISPRa strategy activated <em>CFTR</em> expression in other epithelial cells that lack open chromatin at the -9.5 kb site and in which the locus is normally inactive. However, the -9.5 kb CRE does not function as a classical enhancer of the <em>CFTR</em> promoter in transient reporter gene assays. These data provide a novel mechanism for activating/augmenting CFTR expression, which may have therapeutic utility for mutations that perturb <em>CFTR</em> transcription.</p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1867 2","pages":"Article 195031"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1874939924000270/pdfft?md5=e8ee5a0b32c65fe0747b2b7e3cfe1534&pid=1-s2.0-S1874939924000270-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939924000270","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes an anion-selective channel found in epithelial cell membranes. Mutations in CFTR cause cystic fibrosis (CF), an inherited disorder that impairs epithelial function in multiple organs. Most men with CF are infertile due to loss of intact genital ducts. Here we investigated a novel epididymis-selective cis-regulatory element (CRE), located within a peak of open chromatin at -9.5 kb 5′ to the CFTR gene promoter. Activation of the -9.5 kb CRE alone by CRISPRa had no impact on CFTR gene expression. However, CRISPRa co-activation of the -9.5 kb CRE and the CFTR gene promoter in epididymis cells significantly augmented CFTR mRNA and protein expression when compared to promoter activation alone. This increase was accompanied by enhanced chromatin accessibility at both sites. Furthermore, the combined CRISPRa strategy activated CFTR expression in other epithelial cells that lack open chromatin at the -9.5 kb site and in which the locus is normally inactive. However, the -9.5 kb CRE does not function as a classical enhancer of the CFTR promoter in transient reporter gene assays. These data provide a novel mechanism for activating/augmenting CFTR expression, which may have therapeutic utility for mutations that perturb CFTR transcription.
期刊介绍:
BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.