Regression model optimization using least square algorithms for streamflow data transposition in tropical humid Water Basin

Benjamin Nnamdi Ekwueme
{"title":"Regression model optimization using least square algorithms for streamflow data transposition in tropical humid Water Basin","authors":"Benjamin Nnamdi Ekwueme","doi":"10.1016/j.hydres.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Several projects are under consideration within the Anambra-Imo River Basin (AIRB). However, the location of these projects differs from established gauging stations, necessitating transposition of hydrological information for ungauged sites. This study investigates the transposability of maximum monthly stream records using regression models, employing neighboring stream records as predictors. Ten-year records of five rivers (Adada, Ajali, Otanmiri, Imo, and Ivo Rivers) were deployed to predict one another using a simple regression with five trends (linear, quadratic, cubic, logarithmic, and power). A metric based on compromise programming reveal that Imo records best predict Adada (<span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>0.636</mn></math></span>), Ajali (<span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>0.777</mn></math></span>), and Ivo (<span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>0.403</mn></math></span>) records, while Ajali and Ivo records are the best predictors of Imo (<span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>0.703</mn></math></span>) and Otanmiri (<span><math><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>0.349</mn></math></span>) records, respectively. Linear trends appear to capture relationships among neighboring rivers most effectively. Lack of correlation among neighboring rivers, despite sharing the same basin, suggests that transposition models are catchment-specific and do not support regionalization.</p></div>","PeriodicalId":100615,"journal":{"name":"HydroResearch","volume":"7 ","pages":"Pages 257-271"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589757824000155/pdfft?md5=79370b62f08ef1717c833846aae3b502&pid=1-s2.0-S2589757824000155-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HydroResearch","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589757824000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several projects are under consideration within the Anambra-Imo River Basin (AIRB). However, the location of these projects differs from established gauging stations, necessitating transposition of hydrological information for ungauged sites. This study investigates the transposability of maximum monthly stream records using regression models, employing neighboring stream records as predictors. Ten-year records of five rivers (Adada, Ajali, Otanmiri, Imo, and Ivo Rivers) were deployed to predict one another using a simple regression with five trends (linear, quadratic, cubic, logarithmic, and power). A metric based on compromise programming reveal that Imo records best predict Adada (R2=0.636), Ajali (R2=0.777), and Ivo (R2=0.403) records, while Ajali and Ivo records are the best predictors of Imo (R2=0.703) and Otanmiri (R2=0.349) records, respectively. Linear trends appear to capture relationships among neighboring rivers most effectively. Lack of correlation among neighboring rivers, despite sharing the same basin, suggests that transposition models are catchment-specific and do not support regionalization.

利用最小平方算法优化回归模型,用于热带湿润水流域的溪流数据转置
阿南布拉-伊莫河流域(AIRB)内有几个项目正在考虑之中。然而,这些项目的位置与已建的测量站不同,因此需要对未测量地点的水文信息进行转换。本研究采用回归模型,将邻近河流记录作为预测因子,对最大月度河流记录的可转换性进行了研究。利用具有五种趋势(线性、二次、三次、对数和幂次)的简单回归,对五条河流(阿达达河、阿贾利河、奥坦米里河、伊莫河和伊沃河)的十年记录进行了预测。基于折衷编程的指标显示,伊莫河记录最能预测阿达达(R2=0.636)、阿贾利(R2=0.777)和伊沃(R2=0.403)记录,而阿贾利和伊沃记录分别最能预测伊莫河(R2=0.703)和奥坦米里(R2=0.349)记录。线性趋势似乎能最有效地反映相邻河流之间的关系。相邻河流虽然同处一个流域,但缺乏相关性,这表明换位模型是针对特定流域的,不支持区域化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信