Monitoring of toxic cyanobacterial blooms in Lalla Takerkoust reservoir by satellite imagery and microcystin transfer to surrounding farms

IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Richard Mugani , Fatima El Khalloufi , Minoru Kasada , El Mahdi Redouane , Mohammed Haida , Roseline Prisca Aba , Yasser Essadki , Soukaina El Amrani Zerrifi , Sven-Oliver Herter , Abdessamad Hejjaj , Faissal Aziz , Naaila Ouazzani , Joana Azevedo , Alexandre Campos , Anke Putschew , Hans-Peter Grossart , Laila Mandi , Vitor Vasconcelos , Brahim Oudra
{"title":"Monitoring of toxic cyanobacterial blooms in Lalla Takerkoust reservoir by satellite imagery and microcystin transfer to surrounding farms","authors":"Richard Mugani ,&nbsp;Fatima El Khalloufi ,&nbsp;Minoru Kasada ,&nbsp;El Mahdi Redouane ,&nbsp;Mohammed Haida ,&nbsp;Roseline Prisca Aba ,&nbsp;Yasser Essadki ,&nbsp;Soukaina El Amrani Zerrifi ,&nbsp;Sven-Oliver Herter ,&nbsp;Abdessamad Hejjaj ,&nbsp;Faissal Aziz ,&nbsp;Naaila Ouazzani ,&nbsp;Joana Azevedo ,&nbsp;Alexandre Campos ,&nbsp;Anke Putschew ,&nbsp;Hans-Peter Grossart ,&nbsp;Laila Mandi ,&nbsp;Vitor Vasconcelos ,&nbsp;Brahim Oudra","doi":"10.1016/j.hal.2024.102631","DOIUrl":null,"url":null,"abstract":"<div><p>Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms: <em>Microcystis</em> sp. and <em>Synechococcus</em> sp. Our <em>Microcystis</em> strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our <em>Synechococcus</em> strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried <em>Microcystis</em> bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of <em>Microcystis</em>. The maximum concentration of MC-LR in the reservoir water was 160 µg L<sup>−1</sup>. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 µgL<sup>−1</sup>, indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety.</p></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"135 ","pages":"Article 102631"},"PeriodicalIF":5.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1568988324000659/pdfft?md5=759a5964733231c82989ea2cb69c4517&pid=1-s2.0-S1568988324000659-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harmful Algae","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568988324000659","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms: Microcystis sp. and Synechococcus sp. Our Microcystis strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our Synechococcus strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried Microcystis bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of Microcystis. The maximum concentration of MC-LR in the reservoir water was 160 µg L−1. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 µgL−1, indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety.

Abstract Image

利用卫星图像监测 Lalla Takerkoust 水库中的有毒蓝藻藻华以及微囊藻毒素向周围农场的转移情况
蓝藻有害藻华(CyanoHABs)威胁着全球的公共健康和淡水生态系统。在这项研究中,我们的主要目标是探索蓝藻藻华的动态以及微囊藻毒素(MCs)如何从 Lalla Takerkoust 水库转移到附近的农场。我们利用大地遥感卫星图像、分子分析、收集和分析理化数据,并使用高效液相色谱法评估毒素。我们的调查确定了两种导致蓝藻藻华的蓝藻:我们的微囊藻菌株产生了三种 MC 变体(MC-RR、MC-YR 和 MC-LR),其中 MC-RR 的溶解毒素和细胞内毒素浓度最高。相比之下,我们的 Synechococcus 菌株没有产生任何可检测到的毒素。为了验证归一化植被指数(NDVI)的结果,我们利用了湖泊学数据(包括藻类细胞计数),并对从水库收集的冻干微囊藻藻华样本中的 MCs 进行了量化。我们的研究揭示了 30 年来水库中蓝藻增殖的模式和趋势,并利用 NDVI 方法绘制了蓝藻侵扰区域的历史地图。研究发现,由于微囊藻的浮力作用,MC-LR 在水面附近聚集。水库水中 MC-LR 的最大浓度为 160 µg L-1。而在水库下游 4 公里处,浓度下降了 5.39 倍,为 29.63 微克/升-1,这表明 MC-LR 浓度随着与水华源距离的增加而降低。同样,在相同距离内,MC-YR 浓度下降了 2.98 倍。有趣的是,MC 的分布随水深而变化,水深 10 米时,MC-LR 主要分布在水面,MC-YR 主要分布在水库出口。我们强调需要采取有效的管理策略,以最大限度地减少毒素转移,确保公众健康和安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Harmful Algae
Harmful Algae 生物-海洋与淡水生物学
CiteScore
12.50
自引率
15.20%
发文量
122
审稿时长
7.5 months
期刊介绍: This journal provides a forum to promote knowledge of harmful microalgae and macroalgae, including cyanobacteria, as well as monitoring, management and control of these organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信