Léa Ricard , Guy Desaulniers , Andrea Lodi , Louis-Martin Rousseau
{"title":"Increasing schedule reliability in the multiple depot vehicle scheduling problem with stochastic travel time","authors":"Léa Ricard , Guy Desaulniers , Andrea Lodi , Louis-Martin Rousseau","doi":"10.1016/j.omega.2024.103100","DOIUrl":null,"url":null,"abstract":"<div><p>The multiple depot vehicle scheduling problem (MDVSP) is one of the most studied problems in public transport service planning. It consists of assigning buses to each timetabled trip while respecting vehicle availability at each depot. Although service quality, and especially reliability, is the core of most transport agencies, the MDVSP is more often than not solved solely in a cost-efficient way. This work introduces a data-driven model to the reliable MDVSP with stochastic travel time (R-MDVSP-STT). The reliability of a schedule is assessed and accounted for by propagating delays using the probability mass function of the travel time of each timetabled trip. We propose a heuristic branch-and-price algorithm to solve this problem and a labeling algorithm with a stochastic dominance criterion for the associated subproblems. The solutions obtained are compared based on three metrics — under normal and extraordinary circumstances. Computational results on real-life instances show that our method can efficiently find good trade-offs between operational costs and reliability, improving the reliability of the solutions with little cost increase.</p></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0305048324000665/pdfft?md5=5846a22d911c342a5ab38d403641a455&pid=1-s2.0-S0305048324000665-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305048324000665","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
The multiple depot vehicle scheduling problem (MDVSP) is one of the most studied problems in public transport service planning. It consists of assigning buses to each timetabled trip while respecting vehicle availability at each depot. Although service quality, and especially reliability, is the core of most transport agencies, the MDVSP is more often than not solved solely in a cost-efficient way. This work introduces a data-driven model to the reliable MDVSP with stochastic travel time (R-MDVSP-STT). The reliability of a schedule is assessed and accounted for by propagating delays using the probability mass function of the travel time of each timetabled trip. We propose a heuristic branch-and-price algorithm to solve this problem and a labeling algorithm with a stochastic dominance criterion for the associated subproblems. The solutions obtained are compared based on three metrics — under normal and extraordinary circumstances. Computational results on real-life instances show that our method can efficiently find good trade-offs between operational costs and reliability, improving the reliability of the solutions with little cost increase.
期刊介绍:
Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.