{"title":"Very-long-period signal reveals lava lake sloshing and its interaction with a deep reservoir in Nyiragongo volcano","authors":"Jieming Niu","doi":"10.1016/j.jvolgeores.2024.108088","DOIUrl":null,"url":null,"abstract":"<div><p>The longevity of lava lakes in open-vent volcanoes reflects a hydraulic connection between the lake and the deep part of the magma plumbing system. Constraining the size of the shallow magmatic system and resolving the rheology of magma filling in the system is essential to evaluate potential hazards like lava flow and other activities. As the lava lake is often perturbed by degassing bursts, rockfall, and even convection, seismic waves radiated from the oscillation of fluid and its mechanical coupling with the surrounding solid walls provide invaluable information on probing system geometry and magma rheology. In this report, I show the first observation of very long-period signals in Nyiragongo volcano, to uncover the sloshing of the world's largest known lava lake and its dynamic interaction with a deep reservoir during the relatively quiet period. The signal is manifested as the ground oscillations with two isolated spectral peaks at ∼15 s and ∼16 s sustaining up to half an hour and a spectral peak at a longer period of ∼76 s. The radiated seismic energy can be well recognized by the stations with distances of <50 km to the lava lake. The traveling time, particle-motion polarization, and deformation inversion suggest that the 15 s' and 16 s' modes are related to two orthogonal horizontal forces at a very shallow depth, likely pointing to the sloshing dynamics of the lava lake. The 76 s' mode is considered as the dynamic coupling between the lake bottom to a deep reservoir at a depth of 8–16 km through a conduit driven by the sloshing. The dynamic modeling of the 76 s' mode points to a deep reservoir storativity of ∼8 m<sup>3</sup>/Pa and a spherical reservoir with a radius of ∼7.5 km. High-frequency seismic waves before the onset of the 15 s' and 16 s' modes suggest that the signals may be excited by rigorous degassing or rockfall. Variations in the period and quality factor of the modes reflect the changes in the lake/reservoir geometry and magma rheology. This finding may improve our ability to understand the magmatic plumbing system, track magma evolution in Nyiragongo, and further probe the formation of lava lakes in active volcanoes.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"450 ","pages":"Article 108088"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324000805","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The longevity of lava lakes in open-vent volcanoes reflects a hydraulic connection between the lake and the deep part of the magma plumbing system. Constraining the size of the shallow magmatic system and resolving the rheology of magma filling in the system is essential to evaluate potential hazards like lava flow and other activities. As the lava lake is often perturbed by degassing bursts, rockfall, and even convection, seismic waves radiated from the oscillation of fluid and its mechanical coupling with the surrounding solid walls provide invaluable information on probing system geometry and magma rheology. In this report, I show the first observation of very long-period signals in Nyiragongo volcano, to uncover the sloshing of the world's largest known lava lake and its dynamic interaction with a deep reservoir during the relatively quiet period. The signal is manifested as the ground oscillations with two isolated spectral peaks at ∼15 s and ∼16 s sustaining up to half an hour and a spectral peak at a longer period of ∼76 s. The radiated seismic energy can be well recognized by the stations with distances of <50 km to the lava lake. The traveling time, particle-motion polarization, and deformation inversion suggest that the 15 s' and 16 s' modes are related to two orthogonal horizontal forces at a very shallow depth, likely pointing to the sloshing dynamics of the lava lake. The 76 s' mode is considered as the dynamic coupling between the lake bottom to a deep reservoir at a depth of 8–16 km through a conduit driven by the sloshing. The dynamic modeling of the 76 s' mode points to a deep reservoir storativity of ∼8 m3/Pa and a spherical reservoir with a radius of ∼7.5 km. High-frequency seismic waves before the onset of the 15 s' and 16 s' modes suggest that the signals may be excited by rigorous degassing or rockfall. Variations in the period and quality factor of the modes reflect the changes in the lake/reservoir geometry and magma rheology. This finding may improve our ability to understand the magmatic plumbing system, track magma evolution in Nyiragongo, and further probe the formation of lava lakes in active volcanoes.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.