Magnetic domain wall dynamics studied by in-situ lorentz microscopy with aid of custom-made Hall-effect sensor holder

IF 2.1 3区 工程技术 Q2 MICROSCOPY
Mari Honkanen , Henri Lukinmaa , Sami Kaappa , Suvi Santa-aho , Jaakko Kajan , Samuli Savolainen , Lucio Azzari , Lasse Laurson , Mikko Palosaari , Minnamari Vippola
{"title":"Magnetic domain wall dynamics studied by in-situ lorentz microscopy with aid of custom-made Hall-effect sensor holder","authors":"Mari Honkanen ,&nbsp;Henri Lukinmaa ,&nbsp;Sami Kaappa ,&nbsp;Suvi Santa-aho ,&nbsp;Jaakko Kajan ,&nbsp;Samuli Savolainen ,&nbsp;Lucio Azzari ,&nbsp;Lasse Laurson ,&nbsp;Mikko Palosaari ,&nbsp;Minnamari Vippola","doi":"10.1016/j.ultramic.2024.113979","DOIUrl":null,"url":null,"abstract":"<div><p>We built a custom-made holder with a Hall-effect sensor to measure the single point magnetic flux density inside a transmission electron microscope (TEM, JEM-F200, JEOL). The measurement point is at the same place as the sample inside the TEM. We utilized information collected with the Hall-effect sensor holder to study magnetic domain wall (DW) dynamics by <em>in-situ</em> Lorentz microscopy. We generated an external magnetic field to the sample using the objective lens (OL) of the TEM. Based on our measurements with the Hall-effect sensor holder, the OL has nearly linear response, and when it is switched off, the strength of the magnetic field in the sample region is very close to 0 mT.</p><p>A ferritic-pearlitic sample studied has globular and lamellar cementite (Fe<sub>3</sub>C) carbides in the ferrite matrix. Based on the <em>in-situ</em> Lorentz microscopy experiments, DWs in the ferritic matrix perpendicular to the lamellar carbides start to move first at ∼10 mT. At 160 mT, DWs inside the globular carbide start to disappear, and the saturation occurs at ∼210 mT. At 288 mT, the DWs parallel to the lamellar carbides still exist. Thus, these lamellar carbides are very strong pinning sites for DWs. We also run dynamical micromagnetic simulations to reproduce the DW disappearance in the globular carbide. As in the <em>in-situ</em> experiments, the DWs stay stable until the external field reaches the magnitude of 160 mT, and the DWs disappear before the field is 214 mT. In general, the micromagnetic simulations supported very well the interpretation of the experimental findings.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"262 ","pages":"Article 113979"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000585/pdfft?md5=83afb159438d4d13ebbbcee41c7d1bf4&pid=1-s2.0-S0304399124000585-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000585","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

We built a custom-made holder with a Hall-effect sensor to measure the single point magnetic flux density inside a transmission electron microscope (TEM, JEM-F200, JEOL). The measurement point is at the same place as the sample inside the TEM. We utilized information collected with the Hall-effect sensor holder to study magnetic domain wall (DW) dynamics by in-situ Lorentz microscopy. We generated an external magnetic field to the sample using the objective lens (OL) of the TEM. Based on our measurements with the Hall-effect sensor holder, the OL has nearly linear response, and when it is switched off, the strength of the magnetic field in the sample region is very close to 0 mT.

A ferritic-pearlitic sample studied has globular and lamellar cementite (Fe3C) carbides in the ferrite matrix. Based on the in-situ Lorentz microscopy experiments, DWs in the ferritic matrix perpendicular to the lamellar carbides start to move first at ∼10 mT. At 160 mT, DWs inside the globular carbide start to disappear, and the saturation occurs at ∼210 mT. At 288 mT, the DWs parallel to the lamellar carbides still exist. Thus, these lamellar carbides are very strong pinning sites for DWs. We also run dynamical micromagnetic simulations to reproduce the DW disappearance in the globular carbide. As in the in-situ experiments, the DWs stay stable until the external field reaches the magnitude of 160 mT, and the DWs disappear before the field is 214 mT. In general, the micromagnetic simulations supported very well the interpretation of the experimental findings.

Abstract Image

借助定制霍尔效应传感器支架,通过原位洛伦兹显微镜研究磁畴壁动力学
我们定制了一个带有霍尔效应传感器的支架,用于测量透射电子显微镜(TEM,JEM-F200,JEOL)内的单点磁通密度。测量点与 TEM 内的样品位于同一位置。我们利用霍尔效应传感器支架收集的信息,通过原位洛伦兹显微镜研究磁畴壁(DW)动力学。我们利用 TEM 的物镜 (OL) 对样品产生外部磁场。根据我们使用霍尔效应传感器支架进行的测量,OL 具有近乎线性的响应,当其关闭时,样品区域的磁场强度非常接近 0 mT。根据原位洛伦兹显微镜实验,铁素体基体中垂直于片状碳化物的 DW 在 ∼10 mT 时首先开始移动。160 mT 时,球状碳化物内部的 DW 开始消失,210 mT 时达到饱和。在 288 mT 时,与片状碳化物平行的 DW 仍然存在。因此,这些片状碳化物是 DWs 非常强的钉扎点。我们还进行了动态微磁模拟,以再现球状碳化物中 DW 的消失。与原位实验一样,DWs 在外部磁场强度达到 160 mT 之前保持稳定,而在磁场强度达到 214 mT 之前就会消失。总的来说,微磁模拟很好地支持了对实验结果的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信