Complex seasonal circular block bootstrap for electricity load forecasting

Pertami J. Kunz, Abdelhak M. Zoubir
{"title":"Complex seasonal circular block bootstrap for electricity load forecasting","authors":"Pertami J. Kunz,&nbsp;Abdelhak M. Zoubir","doi":"10.1016/j.sctalk.2024.100354","DOIUrl":null,"url":null,"abstract":"<div><p>We propose the Complex Seasonal Circular Block Bootstrap (XSCBB), a variation of seasonal (circular) block bootstrap that caters for multiple seasonality components in a time series. Electricity consumption (load) prediction is important to balance the supply and load demand, to plan facilities construction and maintenance, to plan distribution, and avoid outages or excess loss. We apply the XSCBB method parametrically to calculate the prediction interval of future electricity consumption given a relatively small amount of historical sample points using the composite ARMA<span><math><mfenced><mi>p</mi><mi>q</mi></mfenced></math></span>– GARCH<span><math><mfenced><mi>r</mi><mi>s</mi></mfenced></math></span> model.</p></div>","PeriodicalId":101148,"journal":{"name":"Science Talks","volume":"10 ","pages":"Article 100354"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772569324000628/pdfft?md5=7349f80e83f765e80c0d2cebae6b571d&pid=1-s2.0-S2772569324000628-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Talks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772569324000628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose the Complex Seasonal Circular Block Bootstrap (XSCBB), a variation of seasonal (circular) block bootstrap that caters for multiple seasonality components in a time series. Electricity consumption (load) prediction is important to balance the supply and load demand, to plan facilities construction and maintenance, to plan distribution, and avoid outages or excess loss. We apply the XSCBB method parametrically to calculate the prediction interval of future electricity consumption given a relatively small amount of historical sample points using the composite ARMApq– GARCHrs model.

用于电力负荷预测的复杂季节性循环块引导法
我们提出了复杂季节性循环块引导法(XSCBB),它是季节性(循环)块引导法的一种变体,可满足时间序列中多种季节性成分的需要。电力消费(负荷)预测对于平衡电力供应和负荷需求、规划设施建设和维护、规划配电以及避免停电或过量损失非常重要。我们采用 XSCBB 方法,利用复合 ARMApq- GARCHrs 模型,在相对少量历史样本点的情况下,参数化计算未来用电量的预测区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信