Rainbow Cycles in Properly Edge-Colored Graphs

IF 1 2区 数学 Q1 MATHEMATICS
Jaehoon Kim, Joonkyung Lee, Hong Liu, Tuan Tran
{"title":"Rainbow Cycles in Properly Edge-Colored Graphs","authors":"Jaehoon Kim, Joonkyung Lee, Hong Liu, Tuan Tran","doi":"10.1007/s00493-024-00101-7","DOIUrl":null,"url":null,"abstract":"<p>We prove that every properly edge-colored <i>n</i>-vertex graph with average degree at least <span>\\(32(\\log 5n)^2\\)</span> contains a rainbow cycle, improving upon the <span>\\((\\log n)^{2+o(1)}\\)</span> bound due to Tomon. We also prove that every properly edge-colored <i>n</i>-vertex graph with at least <span>\\(10^5 k^3 n^{1+1/k}\\)</span> edges contains a rainbow 2<i>k</i>-cycle, which improves the previous bound <span>\\(2^{ck^2}n^{1+1/k}\\)</span> obtained by Janzer. Our method using homomorphism inequalities and a lopsided regularization lemma also provides a simple way to prove the Erdős–Simonovits supersaturation theorem for even cycles, which may be of independent interest.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00101-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that every properly edge-colored n-vertex graph with average degree at least \(32(\log 5n)^2\) contains a rainbow cycle, improving upon the \((\log n)^{2+o(1)}\) bound due to Tomon. We also prove that every properly edge-colored n-vertex graph with at least \(10^5 k^3 n^{1+1/k}\) edges contains a rainbow 2k-cycle, which improves the previous bound \(2^{ck^2}n^{1+1/k}\) obtained by Janzer. Our method using homomorphism inequalities and a lopsided regularization lemma also provides a simple way to prove the Erdős–Simonovits supersaturation theorem for even cycles, which may be of independent interest.

适当边缘着色图形中的彩虹循环
我们证明了平均阶数至少为 \(32(\log 5n)^2\) 的每个适当边缘着色的 n 顶点图都包含一个彩虹循环,这改进了 Tomon 提出的 \((\log n)^{2+o(1)}\) 约束。我们还证明了每一个具有至少 \(10^5 k^3 n^{1+1/k}\) 条边的适当边着色 n 顶点图都包含一个彩虹 2k 循环,这改进了 Janzer 之前得到的约束 \(2^{ck^2}n^{1+1/k}\)。我们使用同态不等式和片面正则化公设的方法还为证明偶数循环的厄尔多斯-西蒙诺维茨超饱和定理提供了一种简单的方法,这可能是一个独立的兴趣点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信