Differentially Private Stochastic Linear Bandits: (Almost) for Free

Osama Hanna;Antonious M. Girgis;Christina Fragouli;Suhas Diggavi
{"title":"Differentially Private Stochastic Linear Bandits: (Almost) for Free","authors":"Osama Hanna;Antonious M. Girgis;Christina Fragouli;Suhas Diggavi","doi":"10.1109/JSAIT.2024.3389954","DOIUrl":null,"url":null,"abstract":"In this paper, we propose differentially private algorithms for the problem of stochastic linear bandits in the central, local and shuffled models. In the central model, we achieve almost the same regret as the optimal non-private algorithms, which means we get privacy for free. In particular, we achieve a regret of \n<inline-formula> <tex-math>$\\tilde {O}\\left({\\sqrt {T}+{}\\frac {1}{\\varepsilon }}\\right)$ </tex-math></inline-formula>\n matching the known lower bound for private linear bandits, while the best previously known algorithm achieves \n<inline-formula> <tex-math>$\\tilde {O}\\left({{}\\frac {1}{\\varepsilon }\\sqrt {T}}\\right)$ </tex-math></inline-formula>\n. In the local case, we achieve a regret of \n<inline-formula> <tex-math>$\\tilde {O}\\left({{}\\frac {1}{\\varepsilon }{\\sqrt {T}}}\\right)$ </tex-math></inline-formula>\n which matches the non-private regret for constant \n<inline-formula> <tex-math>$\\varepsilon $ </tex-math></inline-formula>\n, but suffers a regret penalty when \n<inline-formula> <tex-math>$\\varepsilon $ </tex-math></inline-formula>\n is small. In the shuffled model, we also achieve regret of \n<inline-formula> <tex-math>$\\tilde {O}\\left({\\sqrt {T}+{}\\frac {1}{\\varepsilon }}\\right)$ </tex-math></inline-formula>\n while the best previously known algorithm suffers a regret of \n<inline-formula> <tex-math>$\\tilde {O}\\left({{}\\frac {1}{\\varepsilon }{T^{3/5}}}\\right)$ </tex-math></inline-formula>\n. Our numerical evaluation validates our theoretical results. Our results generalize for contextual linear bandits with known context distributions.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"135-147"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10502314/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose differentially private algorithms for the problem of stochastic linear bandits in the central, local and shuffled models. In the central model, we achieve almost the same regret as the optimal non-private algorithms, which means we get privacy for free. In particular, we achieve a regret of $\tilde {O}\left({\sqrt {T}+{}\frac {1}{\varepsilon }}\right)$ matching the known lower bound for private linear bandits, while the best previously known algorithm achieves $\tilde {O}\left({{}\frac {1}{\varepsilon }\sqrt {T}}\right)$ . In the local case, we achieve a regret of $\tilde {O}\left({{}\frac {1}{\varepsilon }{\sqrt {T}}}\right)$ which matches the non-private regret for constant $\varepsilon $ , but suffers a regret penalty when $\varepsilon $ is small. In the shuffled model, we also achieve regret of $\tilde {O}\left({\sqrt {T}+{}\frac {1}{\varepsilon }}\right)$ while the best previously known algorithm suffers a regret of $\tilde {O}\left({{}\frac {1}{\varepsilon }{T^{3/5}}}\right)$ . Our numerical evaluation validates our theoretical results. Our results generalize for contextual linear bandits with known context distributions.
差分私有随机线性强盗:(几乎)免费
在本文中,我们针对随机线性匪帮问题提出了中心模型、局部模型和洗牌模型中的不同隐私算法。在中心模型中,我们实现了与最优非私有算法几乎相同的遗憾,这意味着我们免费获得了隐私。特别是,我们实现的遗憾值为 $\tilde {O}\left({\sqrt {T}+{}\frac {1}{\varepsilon }}\right)$ ,与已知的私有线性匪徒下限相匹配,而之前已知的最佳算法实现的遗憾值为 $\tilde {O}\left({{}\frac {1}{\varepsilon }\sqrt {T}}\right)$ 。在局部情况下,我们的遗憾值为 $\tilde {O}\left({{}frac {1}{varepsilon }{sqrt {T}}\right)$ ,这与恒定 $\varepsilon $ 时的非私人遗憾值相匹配,但是当 $\varepsilon $ 较小时,遗憾值会受到惩罚。在洗牌模型中,我们的遗憾值也达到了 $\tilde {O}\left({\sqrt {T}+{}\frac {1}{\varepsilon }}\right)$ ,而之前已知的最佳算法的遗憾值为 $\tilde {O}\left({{}\frac {1}{\varepsilon }{T^{3/5}}\right)$ 。我们的数值评估验证了我们的理论结果。我们的结果适用于已知上下文分布的线性匪帮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信