Dynamic controlled variables based dynamic self-optimizing control

IF 3.3 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Chenchen Zhou , Shaoqi Wang , Hongxin Su , Xinhui Tang , Yi Cao , Shuang-Hua Yang
{"title":"Dynamic controlled variables based dynamic self-optimizing control","authors":"Chenchen Zhou ,&nbsp;Shaoqi Wang ,&nbsp;Hongxin Su ,&nbsp;Xinhui Tang ,&nbsp;Yi Cao ,&nbsp;Shuang-Hua Yang","doi":"10.1016/j.jprocont.2024.103228","DOIUrl":null,"url":null,"abstract":"<div><p>Self-optimizing control is a strategy for selecting controlled variables, where the economic objective guides the selection and design of controlled variables, with the expectation that maintaining the controlled variables at constant values can achieve optimization effects, translating the process optimization problem into a process control problem. Currently, self-optimizing control is widely applied to steady-state optimization problems. However, the development of process systems exhibits a trend towards refinement, highlighting the importance of optimizing dynamic processes such as batch processes and grade transitions. This paper formally introduces the self-optimizing control problem for dynamic optimization, termed the dynamic self-optimizing control problem, extending the original definition of self-optimizing control. A novel concept, ”dynamic controlled variables” (DCVs), is proposed, and an implicit control policy is presented based on this concept. The paper theoretically analyzes the advantages and generality of DCVs compared to explicit control strategies and elucidates the relationship between DCVs and traditional controllers. Moreover, this paper puts forth a data-driven approach to designing self-optimizing DCVs, which considers DCV design as a mapping identification problem and employs deep neural networks to parameterize the variables. Three case studies validate the efficacy and superiority of DCVs in approximating multi-valued and discontinuous functions, as well as their application to dynamic optimization problems with non-fixed horizons, which traditional self-optimizing control methods are unable to address.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424000684","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Self-optimizing control is a strategy for selecting controlled variables, where the economic objective guides the selection and design of controlled variables, with the expectation that maintaining the controlled variables at constant values can achieve optimization effects, translating the process optimization problem into a process control problem. Currently, self-optimizing control is widely applied to steady-state optimization problems. However, the development of process systems exhibits a trend towards refinement, highlighting the importance of optimizing dynamic processes such as batch processes and grade transitions. This paper formally introduces the self-optimizing control problem for dynamic optimization, termed the dynamic self-optimizing control problem, extending the original definition of self-optimizing control. A novel concept, ”dynamic controlled variables” (DCVs), is proposed, and an implicit control policy is presented based on this concept. The paper theoretically analyzes the advantages and generality of DCVs compared to explicit control strategies and elucidates the relationship between DCVs and traditional controllers. Moreover, this paper puts forth a data-driven approach to designing self-optimizing DCVs, which considers DCV design as a mapping identification problem and employs deep neural networks to parameterize the variables. Three case studies validate the efficacy and superiority of DCVs in approximating multi-valued and discontinuous functions, as well as their application to dynamic optimization problems with non-fixed horizons, which traditional self-optimizing control methods are unable to address.

基于动态受控变量的动态自我优化控制
自优化控制是一种选择控制变量的策略,以经济目标指导控制变量的选择和设计,期望将控制变量保持在恒定值,从而达到优化效果,将过程优化问题转化为过程控制问题。目前,自优化控制被广泛应用于稳态优化问题。然而,工艺系统的发展呈现出精细化的趋势,凸显了批量工艺和等级转换等动态工艺优化的重要性。本文扩展了自优化控制的原始定义,正式提出了动态优化的自优化控制问题,称为动态自优化控制问题。本文提出了一个新概念--"动态受控变量"(DCVs),并在此基础上提出了一种隐式控制策略。本文从理论上分析了 DCV 与显式控制策略相比的优势和通用性,并阐明了 DCV 与传统控制器之间的关系。此外,本文还提出了一种数据驱动的自优化 DCV 设计方法,将 DCV 设计视为映射识别问题,并采用深度神经网络对变量进行参数化。三项案例研究验证了 DCV 在逼近多值和不连续函数方面的功效和优越性,以及其在非固定视界动态优化问题上的应用,而传统的自优化控制方法无法解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信