P3LS: Partial Least Squares under privacy preservation

IF 3.3 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Du Nguyen Duy, Ramin Nikzad-Langerodi
{"title":"P3LS: Partial Least Squares under privacy preservation","authors":"Du Nguyen Duy,&nbsp;Ramin Nikzad-Langerodi","doi":"10.1016/j.jprocont.2024.103229","DOIUrl":null,"url":null,"abstract":"<div><p>Modern manufacturing value chains require intelligent orchestration of processes across company borders in order to maximize profits while fostering social and environmental sustainability. However, the implementation of integrated, systems-level approaches for data-informed decision-making along value chains is currently hampered by privacy concerns associated with cross-organizational data exchange and integration. We here propose Privacy-Preserving Partial Least Squares (P3LS) regression, a novel federated learning technique that enables cross-organizational data integration and process modeling with privacy guarantees. P3LS involves a singular value decomposition (SVD) based PLS algorithm and employs removable, random masks generated by a trusted authority in order to protect the privacy of the data contributed by each data holder. We demonstrate the capability of P3LS to vertically integrate process data along a hypothetical value chain consisting of three parties and to improve the prediction performance on several process-related key performance indicators. Furthermore, we show the numerical equivalence of P3LS and PLS model components on both a synthetic and a real-world dataset and provide a thorough privacy analysis of the former. Moreover, we propose privacy-preserving explained X- and Y-block variance computations for determining the contribution of each data holder to the federated process model as a basis to incentivize data federation and fair profit-sharing.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424000696","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Modern manufacturing value chains require intelligent orchestration of processes across company borders in order to maximize profits while fostering social and environmental sustainability. However, the implementation of integrated, systems-level approaches for data-informed decision-making along value chains is currently hampered by privacy concerns associated with cross-organizational data exchange and integration. We here propose Privacy-Preserving Partial Least Squares (P3LS) regression, a novel federated learning technique that enables cross-organizational data integration and process modeling with privacy guarantees. P3LS involves a singular value decomposition (SVD) based PLS algorithm and employs removable, random masks generated by a trusted authority in order to protect the privacy of the data contributed by each data holder. We demonstrate the capability of P3LS to vertically integrate process data along a hypothetical value chain consisting of three parties and to improve the prediction performance on several process-related key performance indicators. Furthermore, we show the numerical equivalence of P3LS and PLS model components on both a synthetic and a real-world dataset and provide a thorough privacy analysis of the former. Moreover, we propose privacy-preserving explained X- and Y-block variance computations for determining the contribution of each data holder to the federated process model as a basis to incentivize data federation and fair profit-sharing.

Abstract Image

P3LS:隐私保护下的偏最小二乘法
现代制造业价值链要求对跨公司的流程进行智能协调,以实现利润最大化,同时促进社会和环境的可持续发展。然而,由于跨组织数据交换和整合涉及隐私问题,目前价值链数据知情决策的集成系统级方法的实施受到了阻碍。我们在此提出了隐私保护偏最小二乘法(P3LS)回归,这是一种新型的联合学习技术,可在保证隐私的前提下实现跨组织数据集成和流程建模。P3LS 采用基于奇异值分解(SVD)的 PLS 算法,并使用由可信机构生成的可移动随机掩码,以保护每个数据持有者所提供数据的隐私。我们展示了 P3LS 沿着由三方组成的假定价值链纵向整合流程数据的能力,以及改进若干流程相关关键性能指标预测性能的能力。此外,我们还展示了 P3LS 和 PLS 模型组件在合成数据集和真实数据集上的数值等价性,并对前者进行了全面的隐私分析。此外,我们还提出了保护隐私的 X 和 Y 块解释方差计算方法,用于确定每个数据持有者对联合流程模型的贡献,以此作为激励数据联合和公平利润分享的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信