A nodally bound-preserving finite element method for reaction–convection–diffusion equations

Abdolreza Amiri, Gabriel R. Barrenechea, Tristan Pryer
{"title":"A nodally bound-preserving finite element method for reaction–convection–diffusion equations","authors":"Abdolreza Amiri, Gabriel R. Barrenechea, Tristan Pryer","doi":"10.1142/s0218202524500283","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a novel approach to approximate a broad range of reaction–convection–diffusion equations using conforming finite element methods while providing a discrete solution respecting the physical bounds given by the underlying differential equation. The main result of this work demonstrates that the numerical solution achieves an accuracy of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> in the energy norm, where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span> represents the underlying polynomial degree. To validate the approach, a series of numerical experiments had been conducted for various problem instances. Comparisons with the linear continuous interior penalty stabilised method, and the algebraic flux-correction scheme (for the piecewise linear finite element case) have been carried out, where we can observe the favorable performance of the current approach.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel approach to approximate a broad range of reaction–convection–diffusion equations using conforming finite element methods while providing a discrete solution respecting the physical bounds given by the underlying differential equation. The main result of this work demonstrates that the numerical solution achieves an accuracy of O(hk) in the energy norm, where k represents the underlying polynomial degree. To validate the approach, a series of numerical experiments had been conducted for various problem instances. Comparisons with the linear continuous interior penalty stabilised method, and the algebraic flux-correction scheme (for the piecewise linear finite element case) have been carried out, where we can observe the favorable performance of the current approach.

反应-对流-扩散方程的节点保界有限元法
本文介绍了一种新方法,利用符合有限元方法逼近各种反应-对流-扩散方程,同时提供离散解,尊重基础微分方程给出的物理边界。这项工作的主要结果表明,数值解在能量规范中达到了 O(hk)的精度,其中 k 代表底层多项式阶数。为了验证该方法,针对各种问题实例进行了一系列数值实验。与线性连续内部惩罚稳定方法和代数通量校正方案(用于片断线性有限元情况)进行了比较,我们可以观察到当前方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信