{"title":"Limits to selection on standing variation in an asexual population","authors":"Nick Barton , Himani Sachdeva","doi":"10.1016/j.tpb.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>We consider how a population of <span><math><mi>N</mi></math></span> haploid individuals responds to directional selection on standing variation, with no new variation from recombination or mutation. Individuals have trait values <span><math><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow></math></span>, which are drawn from a distribution <span><math><mi>ψ</mi></math></span>; the fitness of individual <span><math><mi>i</mi></math></span> is proportional to <span><math><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup></math></span>. For illustration, we consider the Laplace and Gaussian distributions, which are parametrised only by the variance <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and show that for large <span><math><mi>N</mi></math></span>, there is a scaling limit which depends on a single parameter <span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></math></span>. When selection is weak relative to drift (<span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt><mo>≪</mo><mn>1</mn></mrow></math></span>), the variance decreases exponentially at rate <span><math><mrow><mn>1</mn><mo>/</mo><mi>N</mi></mrow></math></span>, and the expected ultimate gain in log fitness (scaled by <span><math><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></math></span>), is just <span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></math></span>, which is the same as Robertson’s (1960) prediction for a sexual population. In contrast, when selection is strong relative to drift (<span><math><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt><mo>≫</mo><mn>1</mn></mrow></math></span>), the ultimate gain can be found by approximating the establishment of alleles by a branching process in which each allele competes independently with the population mean and the fittest allele to establish is certain to fix. Then, if the probability of survival to time <span><math><mrow><mi>t</mi><mo>∼</mo><mn>1</mn><mo>/</mo><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></math></span> of an allele with value <span><math><mi>z</mi></math></span> is <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, with mean <span><math><mover><mrow><mi>P</mi></mrow><mo>¯</mo></mover></math></span>, the winning allele is the fittest of <span><math><mrow><mi>N</mi><mover><mrow><mi>P</mi></mrow><mo>¯</mo></mover></mrow></math></span> survivors drawn from a distribution <span><math><mrow><mi>ψ</mi><mi>P</mi><mo>/</mo><mover><mrow><mi>P</mi></mrow><mo>¯</mo></mover></mrow></math></span>. The expected ultimate change is <span><math><mrow><mo>∼</mo><msqrt><mrow><mn>2</mn><mo>log</mo><mrow><mo>(</mo><mn>1</mn><mo>.</mo><mn>15</mn><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt><mo>)</mo></mrow></mrow></msqrt></mrow></math></span> for a Gaussian distribution, and <span><math><mrow><mo>∼</mo><mspace></mspace><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></mfrac><mfenced><mrow><mo>log</mo><mfenced><mrow><mfrac><mrow><mn>0</mn><mo>.</mo><mn>36</mn></mrow><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></mfrac></mrow></mfenced><mo>−</mo><mo>log</mo><mfenced><mrow><mo>−</mo><mo>log</mo><mfenced><mrow><mfrac><mrow><mn>0</mn><mo>.</mo><mn>36</mn></mrow><mrow><mi>N</mi><msqrt><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></mfrac></mrow></mfenced></mrow></mfenced></mrow></mfenced></mrow></math></span> for a Laplace distribution. This approach also predicts the variability of the process, and its dynamics; we show that in the strong selection regime, the expected genetic variance decreases as <span><math><mrow><mo>∼</mo><mspace></mspace><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> at large times. We discuss how these results may be related to selection on standing variation that is spread along a linear chromosome.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"157 ","pages":"Pages 129-137"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000340/pdfft?md5=11e7dda9fdc312e774cd76068c76d9e8&pid=1-s2.0-S0040580924000340-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000340","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider how a population of haploid individuals responds to directional selection on standing variation, with no new variation from recombination or mutation. Individuals have trait values , which are drawn from a distribution ; the fitness of individual is proportional to . For illustration, we consider the Laplace and Gaussian distributions, which are parametrised only by the variance , and show that for large , there is a scaling limit which depends on a single parameter . When selection is weak relative to drift (), the variance decreases exponentially at rate , and the expected ultimate gain in log fitness (scaled by ), is just , which is the same as Robertson’s (1960) prediction for a sexual population. In contrast, when selection is strong relative to drift (), the ultimate gain can be found by approximating the establishment of alleles by a branching process in which each allele competes independently with the population mean and the fittest allele to establish is certain to fix. Then, if the probability of survival to time of an allele with value is , with mean , the winning allele is the fittest of survivors drawn from a distribution . The expected ultimate change is for a Gaussian distribution, and for a Laplace distribution. This approach also predicts the variability of the process, and its dynamics; we show that in the strong selection regime, the expected genetic variance decreases as at large times. We discuss how these results may be related to selection on standing variation that is spread along a linear chromosome.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.