Parametric risk-neutral density estimation via finite lognormal-Weibull mixtures

IF 9.9 3区 经济学 Q1 ECONOMICS
Yifan Li , Ingmar Nolte , Manh Cuong Pham
{"title":"Parametric risk-neutral density estimation via finite lognormal-Weibull mixtures","authors":"Yifan Li ,&nbsp;Ingmar Nolte ,&nbsp;Manh Cuong Pham","doi":"10.1016/j.jeconom.2024.105748","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a new parametric risk-neutral density (RND) estimator based on a finite lognormal-Weibull mixture (LWM) density. We establish the consistency and asymptotic normality of the LWM method in a general misspecified parametric framework. Based on the theoretical results, we propose a sequential test procedure to evaluate the goodness-of-fit of the LWM model, which leads to an adaptive choice for the number and type of mixture components. Our simulation results show that, in finite samples with various observation error specifications, the LWM method can approximate complex RNDs generated by state-of-the-art multi-factor stochastic volatility models with a few (typically less than 4) mixtures. Application of the LWM model on index options confirms its reliability in recovering empirical RNDs with a heavy left tail or bimodality, which can be incorrectly identified as bimodality or a heavy left tail by existing (semi)-nonparametric methods if the goodness-of-fit to the observed data is ignored.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"241 2","pages":"Article 105748"},"PeriodicalIF":9.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304407624000940/pdfft?md5=f465fdac6f8ce04ea8c1db064b06c8cc&pid=1-s2.0-S0304407624000940-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624000940","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new parametric risk-neutral density (RND) estimator based on a finite lognormal-Weibull mixture (LWM) density. We establish the consistency and asymptotic normality of the LWM method in a general misspecified parametric framework. Based on the theoretical results, we propose a sequential test procedure to evaluate the goodness-of-fit of the LWM model, which leads to an adaptive choice for the number and type of mixture components. Our simulation results show that, in finite samples with various observation error specifications, the LWM method can approximate complex RNDs generated by state-of-the-art multi-factor stochastic volatility models with a few (typically less than 4) mixtures. Application of the LWM model on index options confirms its reliability in recovering empirical RNDs with a heavy left tail or bimodality, which can be incorrectly identified as bimodality or a heavy left tail by existing (semi)-nonparametric methods if the goodness-of-fit to the observed data is ignored.

通过有限对数正态-威布尔混合物进行参数风险中性密度估计
本文提出了一种基于有限对数正态-威布尔混合物(LWM)密度的新参数风险中性密度(RND)估计器。我们建立了 LWM 方法在一般失当参数框架下的一致性和渐近正态性。在理论结果的基础上,我们提出了一种序列检验程序来评估 LWM 模型的拟合优度,从而对混合物成分的数量和类型做出自适应选择。我们的模拟结果表明,在具有各种观测误差规格的有限样本中,LWM 方法可以用少量(通常少于 4 个)混合物逼近由最先进的多因子随机波动率模型生成的复杂 RND。LWM 模型在指数期权中的应用证实了它在恢复具有严重左尾或双峰性的经验 RND 方面的可靠性,如果忽略与观测数据的拟合度,现有的(半)非参数方法可能会错误地将这些 RND 识别为双峰性或严重左尾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信