Galois covers of singular curves in positive characteristics

Pub Date : 2024-04-24 DOI:10.1007/s11856-024-2629-6
Soumyadip Das
{"title":"Galois covers of singular curves in positive characteristics","authors":"Soumyadip Das","doi":"10.1007/s11856-024-2629-6","DOIUrl":null,"url":null,"abstract":"<p>We study the étale fundamental group of a singular reduced connected curve defined over an algebraically closed field of an arbitrary prime characteristic. It is shown that when the curve is projective, the étale fundamental group is a free product of the étale fundamental group of its normalization with a free finitely generated profinite group whose rank is well determined. A similar result is established for the tame fundamental groups of seminormal affine curves. In the affine case, we provide an Abhyankar-type complete group theoretic classification on which finite groups occur as the Galois groups for Galois étale connected covers over (singular) affine curves. An analogue of the Inertia Conjecture is also posed for certain singular curves.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2629-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the étale fundamental group of a singular reduced connected curve defined over an algebraically closed field of an arbitrary prime characteristic. It is shown that when the curve is projective, the étale fundamental group is a free product of the étale fundamental group of its normalization with a free finitely generated profinite group whose rank is well determined. A similar result is established for the tame fundamental groups of seminormal affine curves. In the affine case, we provide an Abhyankar-type complete group theoretic classification on which finite groups occur as the Galois groups for Galois étale connected covers over (singular) affine curves. An analogue of the Inertia Conjecture is also posed for certain singular curves.

分享
查看原文
正特性奇异曲线的伽罗瓦盖
我们研究了定义在任意素特征的代数闭域上的奇异还原连通曲线的阶基本群。研究表明,当曲线是射影曲线时,其阶次基群是其规范化的阶次基群与自由有限生成的阶次无限群的自由乘积。类似的结果也适用于半正态仿射曲线的驯服基群。在仿射情况下,我们提供了一个阿比扬卡尔式的完整群论分类,在这个分类上,有限群作为(奇异)仿射曲线上的伽罗瓦埃塔莱连盖的伽罗瓦群出现。对于某些奇异曲线,我们还提出了惯性猜想的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信