{"title":"An example of an infinite amenable group with the ISR property","authors":"Yongle Jiang, Xiaoyan Zhou","doi":"10.1007/s00209-024-03495-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be <span>\\(S_{\\mathbb {N}}\\)</span>, the finitary permutation (i.e., permutations with finite support) group on the set of positive integers <span>\\(\\mathbb {N}\\)</span>. We prove that <i>G</i> has the invariant von Neumann subalgebras rigidity (ISR, for short) property as introduced in Amrutam–Jiang’s work. More precisely, every <i>G</i>-invariant von Neumann subalgebra <span>\\(P\\subseteq L(G)\\)</span> is of the form <i>L</i>(<i>H</i>) for some normal subgroup <span>\\(H\\lhd G\\)</span> and in this case, <span>\\(H=\\{e\\}, A_{\\mathbb {N}}\\)</span> or <i>G</i>, where <span>\\(A_{\\mathbb {N}}\\)</span> denotes the finitary alternating group on <span>\\(\\mathbb {N}\\)</span>, i.e., the subgroup of all even permutations in <span>\\(S_{\\mathbb {N}}\\)</span>. This gives the first known example of an infinite amenable group with the ISR property.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"41 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03495-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be \(S_{\mathbb {N}}\), the finitary permutation (i.e., permutations with finite support) group on the set of positive integers \(\mathbb {N}\). We prove that G has the invariant von Neumann subalgebras rigidity (ISR, for short) property as introduced in Amrutam–Jiang’s work. More precisely, every G-invariant von Neumann subalgebra \(P\subseteq L(G)\) is of the form L(H) for some normal subgroup \(H\lhd G\) and in this case, \(H=\{e\}, A_{\mathbb {N}}\) or G, where \(A_{\mathbb {N}}\) denotes the finitary alternating group on \(\mathbb {N}\), i.e., the subgroup of all even permutations in \(S_{\mathbb {N}}\). This gives the first known example of an infinite amenable group with the ISR property.