Invariant Gibbs measures for the three dimensional cubic nonlinear wave equation

IF 2.6 1区 数学 Q1 MATHEMATICS
Bjoern Bringmann, Yu Deng, Andrea R. Nahmod, Haitian Yue
{"title":"Invariant Gibbs measures for the three dimensional cubic nonlinear wave equation","authors":"Bjoern Bringmann, Yu Deng, Andrea R. Nahmod, Haitian Yue","doi":"10.1007/s00222-024-01254-4","DOIUrl":null,"url":null,"abstract":"<p>We prove the invariance of the Gibbs measure under the dynamics of the three-dimensional cubic wave equation, which is also known as the hyperbolic <span>\\(\\Phi ^{4}_{3}\\)</span>-model. This result is the hyperbolic counterpart to seminal works on the parabolic <span>\\(\\Phi ^{4}_{3}\\)</span>-model by Hairer (Invent. Math. 198(2):269–504, 2014) and Hairer-Matetski (Ann. Probab. 46(3):1651–1709, 2018).</p><p>The heart of the matter lies in establishing local in time existence and uniqueness of solutions on the statistical ensemble, which is achieved by using a para-controlled ansatz for the solution, the analytical framework of the random tensor theory, and the combinatorial molecule estimates.</p><p>The singularity of the Gibbs measure with respect to the Gaussian free field brings out a new caloric representation of the Gibbs measure and a synergy between the parabolic and hyperbolic theories embodied in the analysis of heat-wave stochastic objects. Furthermore from a purely hyperbolic standpoint our argument relies on key new ingredients that include a hidden cancellation between sextic stochastic objects and a new bilinear random tensor estimate.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"22 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01254-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the invariance of the Gibbs measure under the dynamics of the three-dimensional cubic wave equation, which is also known as the hyperbolic \(\Phi ^{4}_{3}\)-model. This result is the hyperbolic counterpart to seminal works on the parabolic \(\Phi ^{4}_{3}\)-model by Hairer (Invent. Math. 198(2):269–504, 2014) and Hairer-Matetski (Ann. Probab. 46(3):1651–1709, 2018).

The heart of the matter lies in establishing local in time existence and uniqueness of solutions on the statistical ensemble, which is achieved by using a para-controlled ansatz for the solution, the analytical framework of the random tensor theory, and the combinatorial molecule estimates.

The singularity of the Gibbs measure with respect to the Gaussian free field brings out a new caloric representation of the Gibbs measure and a synergy between the parabolic and hyperbolic theories embodied in the analysis of heat-wave stochastic objects. Furthermore from a purely hyperbolic standpoint our argument relies on key new ingredients that include a hidden cancellation between sextic stochastic objects and a new bilinear random tensor estimate.

Abstract Image

三维立方非线性波方程的吉布斯不变度量
我们证明了三维立方波方程动力学下吉布斯量度的不变性,该方程也被称为双曲\(\Phi ^{4}_{3}\)模型。这一结果与海尔(Hairer)关于抛物线 \(\Phi ^{4}_{3}\)模型的开创性工作是双曲对应的(Invent.Math.198(2):269-504, 2014)和 Hairer-Matetski (Ann.Probab.46(3):1651-1709,2018)。问题的核心在于建立统计集合上解在时间上的局部存在性和唯一性,这是通过使用解的准控制解析、随机张量理论的分析框架以及组合分子估计来实现的。相对于高斯自由场的吉布斯度量的奇异性带来了吉布斯度量的新热量表示法,以及热波随机对象分析中所体现的抛物线理论和双曲理论之间的协同作用。此外,从纯双曲的角度来看,我们的论证依赖于关键的新成分,包括六次随机对象之间的隐性抵消和新的双线性随机张量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信