{"title":"Intermediate dimensions under self-affine codings","authors":"Zhou Feng","doi":"10.1007/s00209-024-03490-z","DOIUrl":null,"url":null,"abstract":"<p>Intermediate dimensions were recently introduced by Falconer et al. (Math Z 296:813–830, 2020) to interpolate between the Hausdorff and box-counting dimensions. In this paper, we show that for every subset <i>E</i> of the symbolic space, the intermediate dimensions of the projections of <i>E</i> under typical self-affine coding maps are constant and given by formulas in terms of capacities. Moreover, we extend the results to the generalized intermediate dimensions introduced by Banaji (Monatsh Math 202: 465–506, 2023) in several settings, including the orthogonal projections in Euclidean spaces and the images of fractional Brownian motions.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"52 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03490-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Intermediate dimensions were recently introduced by Falconer et al. (Math Z 296:813–830, 2020) to interpolate between the Hausdorff and box-counting dimensions. In this paper, we show that for every subset E of the symbolic space, the intermediate dimensions of the projections of E under typical self-affine coding maps are constant and given by formulas in terms of capacities. Moreover, we extend the results to the generalized intermediate dimensions introduced by Banaji (Monatsh Math 202: 465–506, 2023) in several settings, including the orthogonal projections in Euclidean spaces and the images of fractional Brownian motions.
最近,法尔科纳等人(Math Z 296:813-830,2020)引入了中间维度,以在豪斯多夫维度和盒计数维度之间进行插值。在本文中,我们证明了对于符号空间的每个子集 E,E 在典型的自链编码映射下的投影的中间维度是常数,并由容量公式给出。此外,我们还将结果扩展到了巴纳吉(Monatsh Math 202: 465-506, 2023)在欧几里得空间的正交投影和分数布朗运动图像等几种情况下引入的广义中间维度。