Strain rate-dependent tensile deformation and failure behavior in single-crystal β-Sn

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Tianhao Yu, Yabin Yan, Fuzhen Xuan
{"title":"Strain rate-dependent tensile deformation and failure behavior in single-crystal β-Sn","authors":"Tianhao Yu, Yabin Yan, Fuzhen Xuan","doi":"10.1142/s0217984924503147","DOIUrl":null,"url":null,"abstract":"<p>Given that electronic components often undergo intricate thermal and mechanical loads during operation, comprehensively understanding lead-free solder, particularly solder based on <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn, in various complex load conditions, plays a crucial role in ensuring the structural integrity and functional reliability of integrated circuits. Therefore, investigating the mechanical properties and fracture behavior of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn as a solder material holds paramount importance. In this study, we performed molecular dynamics simulations using the modified embedded atom method to investigate the mechanical properties and crack propagation of single-crystal <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn under different strain rates. The research findings demonstrate that as the strain rate increases, the single-crystal <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn exhibits elevated yield strength, fracture strength, and strain, while the elastic modulus decreases. Under higher strain rates, the relationship between dislocation density and strain rate in single-crystal <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn is quantitatively elucidated. The substantial increase in internal dislocation density imparts conspicuous strain hardening to the material, rendering plastic deformation more challenging. This observation sheds light on the microscale mechanism of strain hardening at the atomic level. Our results shall facilitate a deeper investigation into the mechanical behavior of single-crystal <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn while also paving the path for optimizing the design and application of lead-free solder materials in the electronics industry.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"36 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503147","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Given that electronic components often undergo intricate thermal and mechanical loads during operation, comprehensively understanding lead-free solder, particularly solder based on β-Sn, in various complex load conditions, plays a crucial role in ensuring the structural integrity and functional reliability of integrated circuits. Therefore, investigating the mechanical properties and fracture behavior of β-Sn as a solder material holds paramount importance. In this study, we performed molecular dynamics simulations using the modified embedded atom method to investigate the mechanical properties and crack propagation of single-crystal β-Sn under different strain rates. The research findings demonstrate that as the strain rate increases, the single-crystal β-Sn exhibits elevated yield strength, fracture strength, and strain, while the elastic modulus decreases. Under higher strain rates, the relationship between dislocation density and strain rate in single-crystal β-Sn is quantitatively elucidated. The substantial increase in internal dislocation density imparts conspicuous strain hardening to the material, rendering plastic deformation more challenging. This observation sheds light on the microscale mechanism of strain hardening at the atomic level. Our results shall facilitate a deeper investigation into the mechanical behavior of single-crystal β-Sn while also paving the path for optimizing the design and application of lead-free solder materials in the electronics industry.

单晶 β-Sn 中随应变速率变化的拉伸变形和破坏行为
鉴于电子元件在运行过程中经常承受复杂的热负荷和机械负荷,全面了解各种复杂负荷条件下的无铅焊料,尤其是基于 β-Sn 的焊料,对于确保集成电路的结构完整性和功能可靠性至关重要。因此,研究作为焊料的 β-Sn 的机械性能和断裂行为至关重要。在本研究中,我们使用改进的嵌入原子法进行了分子动力学模拟,以研究单晶 β-Sn 在不同应变速率下的力学性能和裂纹扩展。研究结果表明,随着应变速率的增加,单晶β-Sn的屈服强度、断裂强度和应变均有所提高,而弹性模量则有所下降。在较高应变速率下,单晶β-Sn 中的位错密度与应变速率之间的关系得到了定量阐释。内部位错密度的大幅增加给材料带来了明显的应变硬化,使塑性变形更具挑战性。这一观察结果揭示了原子级应变硬化的微观机制。我们的研究结果将有助于更深入地研究单晶 β-Sn 的机械行为,同时也为优化电子工业中无铅焊接材料的设计和应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信